El pasado 17 de enero David Martínez defendió su tesis doctoral: “High-frequency waves and instabilities in multi-fluid partially ionized solar plasmas“.
En esta Tesis se presenta una teoría multi-fluido que tiene en cuenta los efectos de las colisiones ión-neutro, las colisiones de Coulomb y la difusividad magnética, y usa una ley de Ohm generalizada que incluye el término de Hall. Tal teoría es luego aplicada a la investigación de ondas e inestabilidades en varias capas y estructuras de la atmósfera solar, como la corona y el viento solar, que están completamente ionizados, y la cromosfera y protuberancias, que se hayan parcialmente ionizadas. Mediante simulaciones numéricas y el análisis de la relación de dispersión para perturbaciones transversales de pequeña amplitud, se estudia el impacto que las colisiones tienen en las propiedades de las ondas de Alfvén, de baja frecuencia, y los modos ión-ciclotrón y whistler, de alta frecuencia. El atenuamiento causado por la fricción debida a las colisiones está dominado por la interacción ión-neutro a bajas frecuencias y por las colisiones de Coulomb y la difusividad magnética a altas frecuencias. Además, las regiones de corte y resonancias que las ondas ión-ciclotrón tienen en fluidos sin colisiones desaparecen cuando éstas son tenidas en cuenta. También se muestra que la inclusión del término de Hall es fundamental para describir correctamente las ondas de alta frecuencia en plasmas débilmente ionizados.
También se estudian efectos no lineales, como el calentamiento, y perturbaciones de gran amplitud. Por una parte, se demuestra que la fuerza ponderomotriz generada por ondas de Alfvén no lineales, que causan variaciones en la densidad y presión del plasma, es fuertemente afectada por la interacción de iones con neutros. Por otra, la fricción debida a colisiones causa la disipación de la energía de las perturbaciones. Una fracción de esa energía es transformada en calor y aumenta la temperatura del fluido. Así, el plasma en una protuberancia quiescente o en la cromosfera puede ser calentado mediante las colisiones ión-neutro.
Finalmente, también se investiga el efecto de flujos de cizalladura en la interfaz entre dos medios parcialmente ionizados. La presencia de dichos flujos lleva al desarrollo de la inestabilidad de Kelvin-Helmholtz. Aquí, se estudia la fase inicial de dicha inestabilidad, con la aplicación al caso particular de hilos cilíndricos de filamentos solares. El acoplamiento mediante colisiones entre iones y neutros reduce los ritmos de crecimiento de la inestabilidad para flujos sub-Alfvénicos pero no evita por completo su aparición, lo que significa que los plasmas parcialmente ionizados son inestables para cualquier valor del flujo de cizalladura. La comparación de los resultados analíticos con observaciones realizadas por otros autores muestra que, para un rango de parámetros de las perturbaciones, los ritmos de crecimiento calculados 6 son compatibles con la vida media típica de los hilos.
Foto de una aurora tomada desde la Estación Internacional Espacial el 20 de enero del 2016. (Crédito: ESA / NASA).
Ficha de la tesis doctoral:
- Título: High-frequency waves and instabilities in multi-fluid partially ionized solar plasmas
- Autor: David Martínez Gómez
- Fecha: 17/01/2018
- Programa de doctorado: Física
- Departamento: Física
- Directores: Roberto Soler Juan y Jaume Terradas Calafell