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Summary

The solar atmosphere is a highly dynamic environment in which a huge diversity of waves
and instabilities has been detected. The matter in that region is in plasma state, and thus is
affected by the presence of electromagnetic fields. To understand its dynamics, a theory that
combines the equations describing the properties and evolution of fluids with those for electric
and magnetic fields is required.

Among the several available alternatives that fulfill the mentioned conditions, ideal magne-
tohydrodynamics (MHD) is a useful description when the phenomena of interest are associated
with low frequencies. For long temporal scales, all the species that compose a plasma are
strongly coupled and they can be treated as a single fluid. However, when the temporal scales
are shorter, the coupling is weaker and collisions between the different species produce a de-
viation on the properties of waves from those predicted by ideal MHD. Consequently, a more
complex and accurate theory is needed.

In this Thesis, a multi-fluid theory that takes into account the effects of ion-neutral colli-
sions, Coulomb collisions and magnetic diffusivity, and makes use of a generalized Ohm’s law
that includes Hall’s term is presented. Then, it is applied to the investigation of waves and
instabilities in several layers and structures of the solar atmosphere, such as the fully ionized
solar corona and solar wind, and the partially ionized chromosphere and quiescent prominences
or filaments.

By means of numerical simulations and the analysis of the dispersion relation for small-
amplitude transverse perturbations, the impact of collisions on the properties of the low-
frequency Alfvén waves and the high-frequency ion-cyclotron and whistler modes is studied.
It is shown that the damping caused by collisional friction is dominated by the ion-neutral
interaction at low frequencies and by Coulomb collisions and magnetic diffusivity at high fre-
quencies. Moreover, the cut-off regions and resonances that the ion-cyclotron waves have in
collisionless fluids are removed when collisions are taken into account. It is also demonstrated
that the consideration of Hall’s term in the induction equation is fundamental for the proper
description of high-frequency waves in weakly ionized plasmas.

Non-linear effects, such as heating, and perturbations of large-amplitude are also studied.
On the one hand, it is shown that the ponderomotive force generated by non-linear Alfvén
waves, which induces variations of density and pressure of the plasma, is greatly affected by
the interaction of ions with neutrals. On the other hand, friction due to collisions causes
dissipation of the energy of the perturbations. A fraction of that energy is transformed into
heat and rises the temperature of the fluid. In this way, the plasma in quiescent prominences
or in the chromosphere may be heated by ion-neutral collisions.

Finally, the effect of shear flows at the interface between two partially ionized media are
also investigated. The presence of a shear flow velocity leads to the development of the Kelvin-
Helmholtz instability. Here, the onset of such instability is studied for partially ionized magnetic
flux tubes and an application to cylindrical filament threads is given. It is found that the
collisional coupling between ions and neutrals reduces the growth rates of the instability for
sub-Alfvénic shear flows but cannot completely suppress it, which means that partially ionized
plasmas are unstable for any value of the shear flow. The comparison of the analytical results
with observations performed by other authors show that, for a range of parameters of the
perturbations, the computed growth rates are compatible with the typical lifetimes of threads.
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Resumen en castellano

La atmósfera solar es un ambiente altamente dinámico en el que se ha detectado una gran
variedad de ondas e inestabilidades. La materia en tal región se encuentra en estado de plasma,
por lo que es afectada por la presencia de campos electromagnéticos. Para comprender su
dinámica, se requiere una teoŕıa que combine las ecuaciones que describen las propiedades y
evolución de los fluidos con las de los campos eléctricos y magnéticos.

Entre las diferentes alternativas disponibles que cumplen las condiciones mencionadas, la
magnetohidrodinámica (MHD) ideal es una descripción útil cuando los fenómenos de interés
están asociados a frecuencias bajas. Para escalas temporales largas, las especies componentes
del plasma están fuertemente acopladas y pueden ser tratadas como un fluido único. Para
escalas temporales más cortas, el acoplamiento es más débil y las colisiones entre las distintas
especies producen un desv́ıo en las propiedades de las ondas respecto a las predichas por la
MHD ideal. Consecuentemente, se necesita una teoŕıa más compleja y precisa.

En esta Tesis se presenta una teoŕıa multi-fluido que tiene en cuenta los efectos de las
colisiones ión-neutro, las colisiones de Coulomb y la difusividad magnética, y usa una ley de
Ohm generalizada que incluye el término de Hall. Tal teoŕıa es luego aplicada a la investigación
de ondas e inestabilidades en varias capas y estructuras de la atmósfera solar, como la corona
y el viento solar, que están completamente ionizados, y la cromosfera y protuberancias, que se
hayan parcialmente ionizadas.

Mediante simulaciones numéricas y el análisis de la relación de dispersión para perturba-
ciones transversales de pequeña amplitud, se estudia el impacto que las colisiones tienen en las
propiedades de las ondas de Alfvén, de baja frecuencia, y los modos ión-ciclotrón y whistler,
de alta frecuencia. El atenuamiento causado por la fricción debida a las colisiones está dom-
inado por la interacción ión-neutro a bajas frecuencias y por las colisiones de Coulomb y la
difusividad magnética a altas frecuencias. Además, las regiones de corte y resonancias que
las ondas ión-ciclotrón tienen en fluidos sin colisiones desaparecen cuando éstas son tenidas en
cuenta. También se muestra que la inclusión del término de Hall es fundamental para describir
correctamente las ondas de alta frecuencia en plasmas débilmente ionizados.

También se estudian efectos no lineales, como el calentamiento, y perturbaciones de gran
amplitud. Por una parte, se demuestra que la fuerza ponderomotriz generada por ondas de
Alfvén no lineales, que causan variaciones en la densidad y presión del plasma, es fuertemente
afectada por la interacción de iones con neutros. Por otra, la fricción debida a colisiones causa
la disipación de la enerǵıa de las perturbaciones. Una fracción de esa enerǵıa es transformada
en calor y aumenta la temperatura del fluido. Aśı, el plasma en una protuberancia quiescente
o en la cromosfera puede ser calentado mediante las colisiones ión-neutro.

Finalmente, también se investiga el efecto de flujos de cizalladura en la interfaz entre dos
medios parcialmente ionizados. La presencia de dichos flujos lleva al desarrollo de la inesta-
bilidad de Kelvin-Helmholtz. Aqúı, se estudia la fase inicial de dicha inestabilidad, con la
aplicación al caso particular de hilos ciĺındricos de filamentos solares. El acoplamiento medi-
ante colisiones entre iones y neutros reduce los ritmos de crecimiento de la inestabilidad para
flujos sub-Alfvénicos pero no evita por completo su aparición, lo que significa que los plasmas
parcialmente ionizados son inestables para cualquier valor del flujo de cizalladura. La com-
paración de los resultados anaĺıticos con observaciones realizadas por otros autores muestra
que, para un rango de parametros de las perturbaciones, los ritmos de crecimiento calculados
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son compatibles con la vida media t́ıpica de los hilos.

Resum en català

L’atmosfera solar és un ambient altament dinàmic en el que s’ha detectat una gran varietat
d’ones i inestabilitats. La matèria en aquesta regió es troba en estat de plasma, i per tant es
veu afectada per la presència de camps electromagnètics. Per comprendre la seva dinàmica
es requereix una teoria que combini les equacions que descriuen les propietats i l’evolució dels
fluids amb les del camps elèctrics i magnètics.

De les diverses alternatives disponibles que compleixen els requeriments anteriorment citats,
la magnetohidrodinàmica (MHD) ideal és una descripció útil quan els fenòmens d’interès estan
associats a freqüències baixes. Per escales temporals llargues, les espècies que componen el
plasma es troben fortament acoblades i poden ser tractades com a un únic fluid. Pel contrari,
quan les escales temporals són més curtes, l’acoblament és més feble i les col·lisions entre les
distintes espècies produeixen desviacions en les propietats de les ones respecte a les esperades
en MHD ideal. En conseqüència, és necessàri una teoria més complexa i precisa.

En aquesta Tesi es presenta una teoria multi-fluid que té en compte els efectes de les
col·lisions ió-neutre, les col·lisions de Coulomb i la difusivitat magnètica, i utilitza una llei
d’Ohm generalitzada que inclou el terme de Hall. Aquesta teoria s’aplica a la invesigació
d’ones i inestabilitats en diverses capes i estructures de l’atmosfera solar, com són la corona i
el vent solar, que estan completament ionitzats, i la cromosfera i protuberàncies, que es troben
parcialment ionitzats.

Mitjançat les simulaciones numèriques i l’anàlisi de la relació de dispersió per pertorbacions
transversals de petita amplitud, s’estudia l’impacte que les col·lisions tenen en les propietats
de les ones d’Alfvén, de baixa freqüència i els modes ió-ciclotró i whistler, d’alta freqüència.
L’atenuació prodüıda per la fricció deguda a les col·lisions està dominada per la interacció ió-
neutre a baixes freqüències i per les col·lisions de Coulomb i la difusivitat magnètica a altes
freqüències. A més, les regions de tall i ressonàncies que les ones ió-ciclotró tenen en els fluids
sense col·lisions desapareixen quan aquestes s’inclouen al model. També s’ha trobat que l’efecte
del terme de Hall és fonamental per descriure correctament les ones d’alta freqüència en plasmes
dèbilment ionitzats.

També s’estudien efectes no lineals, com és l’escalfament, i pertorbacions de gran amplitud.
Per una banda, se demostra que la força ponderomotriu generada per ones d’Alfvén no lineals,
que causen variacions en la densitat i pressió del plasma, està fortament afectada per la in-
teracció del ions amb els neutres. Per altra banda, la fricció deguda a les col·lisions causa la
dissipació de l’energia de les pertorbacions. Una fracció d’aquesta energia és transformada en
calor i augmenta la temperatura del fluid. D’aquesta manera, el plasma en una protuberància
quiescent o en la cromosfera pot ser escalfat mitjançant les col·lisions ió-neutre.

Finalment, també s’investiga l’efecte d’un flux amb cisalladura en l’interfase entre dos medis
parcialment ionitzats. La presència del flux dona lloc al desenvolupament de l’inestabilitat
de Kelvin-Helmholtz. Aqúı, s’estudia la fase inicial d’aquesta inestabilitat, aplicada al cas
particular de fils ciĺındrics en filaments solars. L’acoblament a través de les col·lisions entre
ions i neutres redueix el ritme de creixement de l’inestabilitat per fluxos sub-Alfvénics però no
evita per complet la seva aparició, el que significa que els plasmes parcialment ionitzats són
inestables per qualsevol valor del flux de cisalladura. La comparació dels resultats anaĺıtics
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amb observacions realitzades per altres autors mostra que, per un rang de paràmetres de les
pertorbacions, els ritmes de creixement calculats són compatibles amb la vida mitja t́ıpica dels
fils a protuberàncies.
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the nice and friendly work environment that I could enjoy during these years. I have been very
fortunate to spend my working time in such a good company.

Then, I am very grateful to Drs. Tom Van Doorsselaere and Marcel Goossens, from the
Centre for mathematical Plasma-Astrophysics (KU Leuven, Belgium), and Drs. Judith Karpen
and Karin Muglach, from the Goddard Space Flight Center (NASA, USA), for their kind
hospitality during my stays at their respective institutions.

I acknowledge the financial support from the Ministerio de Economı́a y Competitividad
through an FPI fellowship and additional grants that allowed me to visit the aforementioned
foreign centers and to attend to several scientific meetings and workshops.

Back to the islands, there are many people who deserve to be mentioned for making my life
in Mallorca easier or more amusing, or both. Thus, I am grateful to my office mates, Diego
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Chapter 1

Introduction

1.1 Definition and basic properties of plasmas

The everyday experience of human beings is dominated by three of the four fundamental states
of ordinary matter, namely solid, liquid and gas. However, none of them is the most abundant
state in the Universe. Such status belongs, with an overwhelming margin, to the last one to
be discovered by humanity, which is known as plasma. This fourth state of matter comprises
more than 99% of the matter in the visible universe and can be roughly thought of as an
ionized gas that conducts electricity and is affected by magnetic fields. Nevertheless, a more
precise definition was provided by Chen [1984], who described a plasma as a quasi-neutral gas
of charged and neutral particles which exhibits collective behavior.

On Earth’s surface, naturally occurring plasmas are rare, with lightnings being almost the
only examples. Nonetheless, it is not necessary to go very far from the surface to find the
boundary from which plasma becomes the most abundant form of matter in the rest of the
Universe. This limit can be found at about 50 km above the surface, where the layer of Earth’s
atmosphere known as ionosphere has its inner edge. In this layer, incident photons from the
Sun have enough energy to separate electrons from the rest of components of the atoms or
molecules that are present in the environment. Hence, electrons can move freely and their
motions with respect to the positive ions give rise to magnetic fields which, in turn, affect the
behavior of the electric charges. Due to the existing electromagnetic forces, the motion of each
individual particle is influenced by the presence of those surrounding it. This kind of collective
behavior is what characterizes the ionosphere as a plasma. From this layer of our planet out
to the rest of the corners of the Cosmos, the vast majority of what can be seen, i.e., stars,
nebulae, accretion discs around stars, jets in active galaxies, or the interplanetary, interstellar
and intergalactic media, is composed of plasma. Hence, to understand a huge variety of the
phenomena in the observable Universe it is necessary to delve into the properties of the fourth
state of matter.

The identification of plasma as a fourth state different from the three classic ones is rela-
tively recent. It was the English chemist and physicist Sir William Crookes who first described
the behavior of rarefied gases inside a high vacuum cathode ray tube as a new form of matter,
which he termed “radiant matter”. Crookes [1879] proposed that this new fundamental state
was composed of negatively charged molecules. Later, British physicist J.J. Thomson demon-
strated that the components of the rays were not molecules or atoms but previously unknown
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1.1. DEFINITION AND BASIC PROPERTIES OF PLASMAS

subatomic particles. Thomson [1897] gave those particles the name of “corpuscles” but they
are now known as electrons. The use of the term “plasma” to refer to the new state of matter
was promoted by Irving Langmuir [1928]. According to Harold Mott-Smith [1971], while in-
vestigating mercury-vapor discharges Langmuir pointed out that the “equilibrium” part of the
discharge acted as a sort of sub-stratum carrying particles of special kinds, like high-velocity
electrons from thermionic filaments, molecules and ions of gas impurities, which reminded him
of the way blood plasma carries around red and white cells, proteins, hormones and germs.

Since those initial studies, the field of plasma physics has experimented a huge growth and it
is nowadays in the core of many technological applications. Plasmas are used, for instance, for
display purposes (as in television screens), for illumination (fluorescence lamps and neon signs),
for industrial manufacturing (cutting of materials with welding arcs, cleaning and coating of
surfaces, fabrication of semiconductors, waste disposal, etcetera) or for medicinal practices (e.g.,
bio-decontamination and sterilization), among many other applications. Furthermore, plasmas
provide a promising solution for one of the most relevant issues that our civilization faces: the
ever-growing demand of electric energy. In the search of an efficient, abundant and sustainable
source of energy, the fusion of plasmas rises as the best alternative to the energy generation
methods that are available at present. Unfortunately, it is still in development and it seems
that it will take decades until a commercial fusion power plant becomes fully operational.

As shown by the previous lines, the study of plasmas is a field of enormous interest not only
for the mere sake of knowledge (which in many cases is the main motivation that drives scientists
on their research) but also for a wide number of practical reasons. The technological progress
of our civilization greatly depends on improving our understanding of the fourth fundamental
state of the matter. However, there is another essential reason that does not come from our
technology but from nature itself. Life on Earth ultimately depends on the Sun. Solar heat
warms our planet’s atmosphere and surface and is the basic driver of the weather. Moreover,
the influence of Sun’s magnetic field extends throughout the entire solar system and it greatly
affects Earth’s magnetosphere. This region around our planet is continuously distorted by the
stream of charged particles outgoing from the Sun, which receives the name of solar wind, and
by events like solar flares or coronal mass ejections. These events are explosive releases into
space of matter and electromagnetic radiation. Such perturbations of the magnetosphere may
produce phenomena as alluring as the aurora or polar lights (see an example in Figure 1.1), but
can also have detrimental consequences to our society by, for instance, disrupting long-distance
radio communications, damaging satellite electronics or causing electrical power blackouts. As
any other star, the Sun is a gigantic ball of plasma. Hence, to understand how its magnetic
field is generated and varies over time and to grasp the details of the tight interaction between
the Sun and Earth, it is indispensable to investigate the nature of plasmas.

In the previous paragraphs, some vague definitions of what a plasma is have been presented.
However, to clearly distinguish this fundamental state of matter from the other ones, more
precise definitions are required. It has been said that a plasma is an ionized gas, but this
statement leads immediately to the following question: is any ionized gas a plasma? The
answer is no, because, to be considered a plasma, the fluid ought to show a special type of
collective behavior. Furthermore, a small degree of ionization is present in every gas (Chen
[1984]) but not every gas acts like a plasma, a fact that rises a new question: what is the
minimum degree of ionization in a fluid that allows the appearance of the collective behavior
associated to plasmas? The answer is not straightforward and in this Thesis it will be shown
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Figure 1.1: Photograph of an aurora taken from the International Space Station on January
20, 2016 (Credit: ESA / NASA).

that even in fluids with ionization degrees as low as 10−5 charged particles per neutral atom
the effects caused by ions cannot be overlooked. The degree of ionization in a gas in thermal
equilibrium can be estimated by using Saha’s equation, which is given by

ni

nn
=

(
2πmekB

h2

)3/2
T 3/2

ne
exp

(−Ui

kBT

)
, (1.1)

where ni, nn and ne are the number densities of ions, neutral particles and electrons, respec-
tively, me ≈ 9.1 × 10−31 kg is the electron mass, kB ≈ 1.38 × 10−23 J K−1 is the Boltzmann
constant, h ≈ 6.63×10−34 J s is Planck’s constant, T is the temperature of the gas and Ui is the
ionization energy, i.e., the energy required to remove an electron from the neutral atom (values
of the ionization energies are typically given in electron-volts, abbreviated as “eV”, which have
the equivalence of 1 eV = 1.602 × 10−19 J). Due to their exponential dependence on tempera-
ture, ionization degrees vary throughout an immense range of orders of magnitude. This can
be checked by inspecting the data shown in Table 1.1, where the parameters of three different
environments are presented and their corresponding degrees of ionization are computed (the
calculation assumes that ne ≈ ni). For air at room temperature, ni/nn ≪ 1, i.e., air has a
ridiculous quantity of free charged particles. Air is a gas, not a plasma, and its general behav-
ior is described by the laws of hydrodynamics without the influence of electromagnetic fields.
Conversely, inside the fusion devices known as tokamaks (which are contraptions of toroidal
shape where matter is confined by means of intense magnetic fields), with ni/nn ≈ 2.4 × 1013,
or in the solar corona (where ni/nn ≈ 2.1× 1018) there are much more ions than neutral parti-
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cles. Hence, the dynamics of those two environments are certainly governed by the interaction
between charges and electromagnetic fields.

Table 1.1: Degrees of ionization of various fluids

Fluid T (K) Ui (eV) nn (m−3) ni (m−3) ni/nn

Air 300 14.5 3 × 1025 – 10−122

Tokamak 108 13.6 – 1020 2.4 × 1013

Solar corona 106 13.6 – 1012 2.1 × 1018

Values of nn, T and Ui are taken from Goedbloed and Poedts [2004]. Note that
Saha’s equation allows to compute ni if nn is known, and vice versa. Hence, this
table only shows the value that it is known for each fluid before performing the
computation.

The ionization degree gives the intuitive idea that fluids behave as plasmas if ni/nn & 1
and as gases if ni/nn ≪ 1. Nevertheless, it does not provides a precise criterion to differentiate
the two states of matter and to determine the minimal proportion of charges that are necessary
for the plasma behavior to emerge. Hence, some other characteristics of the fluid need to be
checked.

One of the main properties of plasmas is that they tend to stay electrically neutral. Any
perturbation of the balance between positive and negative charges generates strong electrostatic
forces that act to nullify that perturbation and to recover the neutrality of the fluid. This fact
establishes a length scale below which the fluid cannot be treated as a plasma. The size of
this length scale can be estimated by assuming that the aforementioned perturbations may be
caused by thermal fluctuations. The energy of those fluctuations is given by kBT and it needs
to be compared with the electrostatic energy of the affected particles, which is given by eφ,
where e = 1.602×10−19 C is the elementary electric charge and φ is the electrostatic potential.
The potential φ can be obtained from Poisson’s equation, namely

∇2φ =
−e

ǫ0
(ni − ne), (1.2)

where ǫ0 = 8.854 × 10−12 F m−1 is the electric permittivity of the vacuum.
Assuming that the plasma is in thermal equilibrium, the statistical distribution function of

velocities of electrons and ions is given by the Maxwell-Boltzmann distribution, which can be
written as (see, e.g., Chen [1984])

f(u) = A exp

[− (mu2/2 + qφ)

kBT

]
, (1.3)

where u represents the velocity, q is the charge of the particle and A is a normalization constant
whose value is not relevant at the moment. The Maxwell-Boltzmann distribution expresses
that there are more particles in the regions where the potential energy is small because not all
particles have enough energy to reach the regions where the electrostatic potential is large.

From this distribution, it is possible to obtain the number density function for ions and
electrons, which are then given by

ni = n0 exp

(−eφ

kBT

)
(1.4)
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and

ne = n0 exp

(
eφ

kBT

)
, (1.5)

respectively, where n0 = n(φ = 0), i.e., n0 represents the number density of particles in a region
far away from the perturbation. Hence, by expressing the Laplacian in spherical coordinates,
Equation (1.2) can be rewritten in the following way:

1

r2

∂

∂r

(
r2∂φ

∂r

)
=

2en0

ǫ0
sinh

(
eφ

kBT

)
. (1.6)

If the thermal energy is larger than the electrostatic energy, i.e., if kBT > eφ, the factor

sinh
(

eφ
kBT

)
can be approximated by eφ/(kBT ) and the previous equation becomes

1

r2

∂

∂r

(
r2∂φ

∂r

)
=

2e2n0φ

ǫ0kBT
. (1.7)

whose solution, after imposing that φ tends to zero when r tends to infinity, is

φ = φ0 exp

(
− r

λD

)
, (1.8)

where φ0 = q/(4πǫ0r) is the electrostatic potential created by a charge in vacuum. The param-
eter λD has units of length, is defined as

λD ≡
√

ǫ0kBT

2e2n0

, (1.9)

and is referred to as the Debye shielding length. Thus, according to Equation (1.8), the potential
generated by the charge imbalance decreases exponentially with the distance and its effect is
negligible at distances of several λD because it is shielded by the presence of the rest of ions
and electrons. The Debye length is also related to the property of quasi-neutrality that holds
in plasmas. If the length scales of the dynamics of an ionized fluid, denoted by L, are much
larger than λD, the condition of quasi-neutrality is satisfied because the effects of any external
potential or local charge concentrations can only arise in scales of the order of λD due to the
shielding caused by the fast rearrangement of the particles. This rearrangement prevents the
appearance of large potentials in the whole plasma and keeps it quasi-neutral in terms of its
total charge, i.e.,

|
∑

i Zini − ne|
ne

≪ 1. (1.10)

The previous formula assumes that the plasma may be composed of several positive ions, each
one with a different signed charge number, Zi.

The Debye shielding is one of the fundamental characteristics of the behavior of plasmas
but it is only present when there are enough particles inside what is known as a Debye sphere,
a volume with a radius given by the Debye length. As it would be expected, a scarce number
of charges cannot fully nullify the potential created by a perturbation in the fluid. Thus, a new
question comes forth: how many particles are enough? The answer is provided by the so-called
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Debye number, which obviously depends on the density of the fluid and the Debye length. It
is defined as

ND =
4

3
πneλ

3
D ≈ 1.38 × 106

√
T 3

ne
. (1.11)

It is considered that there are enough particles in a Debye sphere for statistical considerations
to be valid and for the collective behavior to be present when ND ≫ 1.

The long-range Coulomb interaction between charged particles is not the only type of in-
teraction that can be found in a gas if it is not fully ionized. Ions and electrons can also collide
with neutral particles, a short-range binary interaction which is the main effect investigated
in this Thesis. The nature of the fluid depends on which process dominates. The dynamics
of gases are controlled by hydrodynamic forces due to charged particles colliding so frequently
with neutrals. In contrast, when Coulomb interactions prevail over collisions with neutrals, the
fluid behaves as a plasma. If τ is defined as the time scale of the collective motion and τn is the
mean time between collisions of charged particles with neutrals, the condition for an ionized
gas to be a plasma is that

τ ≪ τn. (1.12)

An approximate expression for τn is given by

τn ≈ 1017

nn

√
T

. (1.13)

The previous formula (see Goedbloed and Poedts [2004]) has been computed by dividing the
mean free path, λmfp, of particles in a hydrogen gas by the thermal speed, vth, i.e., τn ≈
λmfp/vth. The mean free path is computed as λmfp = 1/(nnσ), where the cross-section is given,
in the hard-sphere approximation, by σ = πa2 ≈ 10−19 m2, with a ≈ 2× 1010 m the radius of a
neutral atom. The thermal velocity is given by vth ≈

√
kBT/mp, where mp = 1.6726×10−27 kg

is the proton mass.
Hence, as a summary, the typical collective behavior of plasmas appears when the following

conditions are fulfilled:

1. the length scales of the dynamics are much larger than the Debye length, i.e., L ≫ λD,

2. there are enough charged particles in a Debye sphere to produce the shielding from ex-
ternal electric fields and to allow the statistical treatment, i.e., ND ≫ 1, and

3. the time scales of the global motions are much shorter than the collisional time with
neutrals, i.e., τ ≪ τn.

Table 1.2 shows the values that are obtained when the previous conditions are computed for
the ionized gases in a tokamak and the solar corona. The plasma conditions are easily satisfied
in a tokamak: the Debye length is small compared to the typical size of this kind of nuclear
reactors (of the order of 1 m), the number of ions in a Debye sphere is more than enough for
statistical considerations, i.e, ND ≫ 1, and the collective oscillatory motions have periods much
lower than τn. The same happens in the solar corona: typical structures than can be found in
the corona have length scales of λ ∼ 107 m, the plasma parameters is ND ≫ 1 and τn is larger
than the age of the Universe.
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Table 1.2: Comparison of plasma conditions for several environments

Fluid nn (m−3) λD (m) ND τn (s)
Tokamak 4.2 × 106 5 × 10−5 5 × 107 2.4 × 106

Solar corona 4.7 × 10−7 0.05 5 × 108 2 × 1020

The conditions analyzed above correspond to the microscopic level of the properties of
plasmas. They are related to electrostatic, collisional and thermal effects but they ignore one
of the fundamental characteristics of plasmas, which is that they are affected by magnetic fields.
The consideration of the magnetic field introduces additional conditions, which are macroscopic
because they affect the plasma as a whole and not only to a local portion of the fluid (see, e.g.,
Goedbloed and Poedts [2004]). These new conditions are related to the cyclotron motions of
electrons and ions, and can be expressed in terms of the cyclotron frequency or gyrofrequency,
Ωe,i (e for electrons and i for ions), defined as

Ωe,i =
qe,iB

me,i
, (1.14)

and the cyclotron radius (also known as gyroradius or Larmor radius), given by

re,i =
me,iv⊥e,i

|qe,i|B
, (1.15)

where v⊥e,i is the component of the particle velocity perpendicular to the direction of the
magnetic field.

The macroscopic condition for the time scales is established by the inverse of the cyclotron
frequencies, Ω−1

e,i . The global length and time scales are required to be large enough to allow
averaging over the microscopic dynamics, which means that they should be much larger than
re,i and Ω−1

e,i , respectively. As both quantities of interest are directly proportional to the mass of
the particles, the most limiting conditions are related to ions (the mass of the proton is about
1840 times the mass of the electron). In addition, the two cyclotron parameters are inversely
proportional to the magnetic field and, thus, the macroscopic conditions are more easily satisfied
when the magnetic field is large. The corresponding conditions for a tokamak and the solar
corona are shown in Table 1.3, where the Larmor radii have been computed by assuming that the
perpendicular velocity is given by the thermal velocity, i.e., v⊥e,i ≈ vth e,i ≈ (kBT/me,i)

1/2. In
the same way as the microscopic conditions, these macroscopic requirements are easily satisfied
in the considered environments.

Table 1.3: Macroscopic plasma conditions

Fluid B (G) Ω−1
e (s) Ω−1

i (s) re (m) ri (m)
Tokamak 3 × 104 1.9 × 10−12 3.5 × 10−9 7 × 10−5 0.003
Solar corona 10−3 5.7 × 10−9 10−5 0.02 1

Once the conditions that differentiate plasmas from the other three fundamental states of
ordinary matter have been explained, the next step is to mention how plasma dynamics can
be described. One rough possibility is to follow the motion of each particle of the plasma by
applying the single particle orbit theory. In this description, each particle has an equation of
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motion which governs how it reacts to the presence of electric and magnetic fields. However,
this approach is not practical due to the large numbers of particles in a plasma and, moreover,
it would be valid only when the density of particles is so low that the interactions between
them can be neglected.

A more appropriate option comes from the kinetic plasma theory. This approach, which
takes into account the interaction between the large number of particles, treats the plasma
statistically. The main element of the kinetic theory is the distribution function, which ex-
presses how the particles of the plasma are distributed throughout the phase space, i.e., the
six-dimensional space formed by the three coordinates of the position vector, x = (x, y, z)T ,
and the three components of the velocity, v = (vx, vy, vz)

T . Then, the dynamics of the plasma
is obtained from the temporal evolution of the distribution function. The kinetic approach has
the advantages that it is extremely accurate and retains all the relevant physical information
of the plasma, but at the expense of a large complexity.

Magnetohydrodynamics (MHD), which focus on the macroscopic processes of the plasma,
is a much simpler alternative to the kinetic theory. It describes the evolution of plasmas in
terms of average macroscopic variables, like the density or the temperature, which depend on x

but not on v. This approach is applicable when length scales are much larger than the Debye
length and the gyroradii of ions and electrons. In addition, it assumes that all the species of the
plasma are strongly coupled, which means that there are frequent enough collisions between
the particles to establish the fluid behavior. Thus, the time scales must be much larger than
the inverse of the collision frequencies. Those collision frequencies can be obtained from the
friction coefficients shown in Section 2.2.1.

An intermediate step between the kinetic and the MHD descriptions is provided by multi-
fluid theories, like the model presented in this Thesis, in which not all the species that compose
the plasma are strongly coupled. Additional details of the multi-fluid theory are given in
Chapter 2.

1.2 The Sun

1.2.1 General aspects of the Sun and its interior

Since the Sun is the closest star to Earth, it occupies a prominent place in the human worldview:
it is at the center of the Solar System and accounts for about 99.86 % of its mass. However, from
the astronomical point of view, it is not so special: even only within the limits of our galaxy,
the Milky Way, more than one hundred million stars akin to the Sun can be found. This fact
has a very important advantage for the field of astrophysics: what can be learned about the
Sun may be easily extrapolated to an enormous number of other stars. This is another reason
why it is so important to obtain a deep understanding of the processes that develop in the Sun.
Its main physical parameters are summarized in Table 1.4 and a scheme of the structure of its
interior and its atmosphere is shown in Figure 1.2.

In terms of mass, the Sun is composed of a 73% of hydrogen, a 25% of helium, a 0.77% of
oxygen, and then smaller quantities of other heavier elements like carbon, iron, neon, nitrogen,
silicon, magnesium or sulfur. It has been given by astronomers the spectral classification G2V,
which corresponds to main-sequence dwarf stars with prominent H and K lines of singly ionized
calcium and weak hydrogen lines in their spectra. The Sun is commonly referred to as a yellow

20



1.2. THE SUN

Table 1.4: Physical parameters of the Sun

Parameter Value
Mass, M⊙ 1.99 × 1030 kg
Equatorial radius, R⊙ 6.96 × 108 m
Flattening 9 × 10−6

Equatorial surface gravity 274 m s−2 (27.94 g)
Average density 1408 kg m−3

Luminosity, L⊙ 3.828 × 1026 W
Effective temperature 5776 K
Age ≈ 4.6 Gyr

Figure 1.2: Structure of the Sun’s interior and atmosphere (Credit: NASA / Goddard).

dwarf, although its actual color is white.
The internal structure of the Sun can be divided in four regions, namely core, radiative zone,

tachocline and convective zone, whose characteristics are detailed in the following paragraphs.

Core

This region extends from the center of the star to about 0.2 R⊙. Here, hydrogen is being
transformed into helium by means of nuclear fusion. This process is possible due to the large
densities, of the order of 1.6 × 105 kg m−3, and temperatures, around 1.6 × 107 K.

Radiative zone

Photons are continuously emitted, absorbed and re-emitted by protons and helium nuclei in
the radiative zone, which extends up to ∼ 0.7 R⊙. This layer owes its name to the mechanism
of energy transfer that dominates, namely the thermal radiation: energy travels in the form
of electromagnetic radiation. The matter in this zone is so dense that photons can travel very

21



1.2. THE SUN

short distances before being absorbed or scattered by another particles, which explains the very
long time it takes to cross this region. The temperature drops from about 7 million K at the
bottom of the radiative zone to about 2 million K at its top.

Tachocline

Located at a distance of ∼ 0.7 R⊙ from the center of the Sun, this thin layer, with an approx-
imate thickness of 0.03 R⊙, serves as a transition region between the radiative zone and the
convective zone. It is believed that the Sun’s magnetic field is generated in this layer due to a
magnetic dynamo effect by which kinetic energy is transformed into electromagnetic energy.

Convective zone

The convective zone extends from ∼ 0.7 R⊙ to the surface. In this region, the plasma is not
dense or hot enough for the energy to be transfered primarily by thermal radiation. Due to the
large temperature gradients, matter is unstable to convection. The convective motions consists
in hot and light volumes of plasma rising towards the surface, where the heat they carry is
released. There, the material cools, becomes denser and sinks again towards the bottom, where
the cycle starts again. Thanks to this cycle, the energy generated at the core can finally reach
the surface of the Sun, the photosphere, whose granular appearance is produced by the top of
the thermal cells formed during the convection process.

1.2.2 Layers of the solar atmosphere

The atmosphere of the Sun can also be divided in several regions with clearly different values of
composition, temperature and density. The variation of the latter two parameters with height
is represented in Figure 1.3, where it can be seen that, as it would be expected, the density
decreases with height but, surprisingly, the temperature does not follow the same behavior at
large heights and increases by several orders of magnitude. This anti-intuitive demeanor leads
to the so-called coronal heating problem: several mechanisms have been proposed to explain
the rise of temperature, but the precise answer to the issue is not known yet.

Moreover, not all the regions of the solar atmosphere can be seen with the naked eye under
normal conditions. The lower layer, the photosphere, is the visible surface of the star, and
the corona and a small fraction of the chromosphere can be briefly seen during solar eclipses.
However, ordinarily the outer layers can only be observed by means of special instruments.

Photosphere

The lower layer of the solar atmosphere is the region where almost all of the energy generated
by the nuclear reactions at the core can finally escape to the space. It has a thickness of about
550 km, a temperature of ∼ 5700 K at its bottom and ∼ 4500 K at its top, and a density of
the order of 1023 particles per m3. A visible light image of the photosphere is shown in the left
panel of Figure 1.4. Several dark spots can be seen in that picture. Those features are known
as sunspots and they appear darker than the surroundings because they are colder. They have
temperatures of about 4000 K and, according to the black-body radiation laws, they emit less
energy.
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Figure 1.3: Temperature and mass density in the solar atmosphere as functions of height
(Credit: Eugene Avrett / Smithsonian Astrophysical Observatory).

Figure 1.4: Left: Sun’s photosphere observed in visible light with a solar filter (Credit: Geoff
Elston / Society for Popular Astronomy). Right: Sun’s chromosphere as seen in the He ii 304 Å
line by the instrument SDO/AIA (Credit: NASA).

Chromosphere

Right above the photosphere there is a region where the minimum temperature of the atmo-
sphere is reached, with a value of about 4100 K. After this minimum, the temperature rises
again with altitude in the chromosphere, a layer with a thickness of ∼ 2000 km. At the top
of this region, the temperature is of the order of 2 × 104 K. During solar eclipses a portion of
the chromosphere can be seen in pink and red tones. An image of the chromosphere as seen by
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SDO at the wavelength 30.4 nm, caused by atoms of singly ionized helium, is shown in the right
panel of Figure 1.4. Some features protruding from the solar limb can be seen: they receive the
name of prominences.

Transition region

A narrow transition region, with a thickness of a few tens of kilometers, exists between the
chromosphere and the next layer of the atmosphere, the corona. In this transition region the
temperature of the plasma rises to 106 K.

Corona

The temperature of the plasma keeps increasing in the corona and can reach values of the
order of 107 K. In contrast with the photosphere and the chromosphere, where a non-negligible
amount of neutral particles is present, the much lighter plasma of the corona is almost fully
ionized. The enormous temperatures of this environment have been inferred from the analysis
of the spectral lines, which reveals the presence of highly ionized states of heavier elements like
calcium or iron.

Figure 1.5: White-light corona during a solar eclipse. The right side has been digitally processed
to enhance low-contrast structures invisible to the human eye. From Rušin et al. [2010].

The corona is very dim in visible light compared to the lower layers. This is the reason
why it can only be seen with the naked eye during solar eclipses (see Figure 1.5) or by using
coronagraphs that hide the much brighter solar disk. Nevertheless, it is very bright in the
range of ultraviolet radiation and X-rays. Most of X-ray and ultraviolet photons coming from
the Sun are absorbed by Earth’s atmosphere and do not reach its surface. Hence, the vast
majority of information about the bright corona is obtained by means of satellites in outer
space. Observations performed with the most modern instruments have revealed the highly
dynamic nature of the corona, where the magnetic field plays a prominent role in phenomena
like coronal loops, flares or coronal mass ejections.
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Heliosphere

The last layer of the solar atmosphere starts at a distance of ∼ 20 R⊙ and it can be said that
it marks the limits of the Solar System. It is a bubble-like structure created by the solar wind
that extends far beyond the orbits of the outer planets. The particles of the solar wind travel
outwards from the Sun until they are stopped by the pressure of the interstellar medium, i.e.,
by the stellar winds of the surrounding stars. According to measures taken by the Voyager 1
spacecraft, the human-made object that has gone farthest from Earth, the outer boundary of
the heliosphere, known as heliopause, is located at a distance of 121 astronomical units (AU).

1.3 Structures and dynamics in the solar atmosphere

The Sun is not a quiet and perfectly uniform sphere of plasma but several kinds of features and
phenomena can be observed throughout the different layers of its atmosphere. The properties
of some of those features and their dynamics, which are strongly related to the interaction
between the plasma and the magnetic fields, are detailed below.

1.3.1 Waves in the chromosphere

The existence of waves in the chromosphere has been known at least from the early 60s, when
Leighton et al. [1962] reported the detection of propagating oscillations, although wave-based
mechanisms for heating this layer of the chromosphere were proposed long before (see, e.g.,
Biermann [1946], Schwarzschild [1948]). In addition, during the last twenty years an over-
whelming amount of evidence about the existence of MHD waves in the chromosphere has been
gathered. For instance, De Pontieu et al. [2007] reported the detection of Alfvénic waves and
various observed twist motions were interpreted as torsional Alfvén waves by Jess et al. [2009]
and De Pontieu et al. [2012]. More details about the observations of MHD waves can be found
in, e.g., Morton et al. [2012] or Jess et al. [2015].

Physical parameters such as temperature, density, ionization degree or magnetic field strength
present strong variations throughout the chromosphere. For example, the total density at the
bottom is about five orders of magnitude larger than at its top, with values of about 10−5

and 10−10 kg m−3, respectively. The temperature increases with height by an order of magni-
tude, while the magnetic field decreases with height, with a value about 500 G at the bottom
and of the order of 20 G at the top. The change of temperature creates huge differences in
the ionization degree of the plasma, which leads to a remarkable variation of the properties
of MHD waves. Neutrals are much more abundant than ions in the low chromosphere, while
the opposite occurs at the higher end. This fact is illustrated by Figure 1.6, which shows the
ratio of a given neutral or ionized species with respect to the total density of the plasma as
a function of height. The data have been taken from the hydrodynamic model developed by
Fontenla et al. [1993] for a chromospheric bright region.

It has been known since the middle of the last century that a non-negligible amount of
neutrals may have a dramatic impact on the dynamics of a plasma and, in particular, on the
oscillations that may appear in such a fluid (see, e.g., Piddington [1956], Watanabe [1961a,b],
Kulsrud and Pearce [1969]). The main effect is that neutrals exchange momentum with ions by
means of collisions, which leads to an attenuation of the amplitude of MHD waves. In addition,
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Figure 1.6: Relative abundances, ξs ≡ ρs/ρ, where ρ is the total density, of protons, neutral
hydrogen, neutral helium and singly-ionized helium as a function of the height according to the
chromospheric model F of Fontenla et al. [1993]. Adapted from Soler et al. [2015b].

if the collisions occur frequently enough, the period of the Alfvénic waves is increased while
their propagation speed is reduced (see, e.g., Kumar and Roberts [2003]). Hence, taking into
account the dependence on height of the relative abundances of neutral and ionized species
shown in Figure 1.6, the properties of MHD waves are greatly affected by neutrals in a large
part of the chromosphere. In this Thesis, several effects of the presence of neutrals at different
heights of the chromosphere are investigated in Chapter 4.

1.3.2 Prominences and filaments

Prominences are volumes of plasma that is denser and cooler than the surrounding environment.
They are anchored in the photosphere and extend through the corona. They are supported
against gravity by the effect of the magnetic field. An example of this kind of structures is
shown in the left panel of Figure 1.7, where the plasma can be clearly seen protruding from
the limb of the Sun. They form along the polarity inversion lines (PIL) of the magnetic field,
i.e., the lines that divide two regions of opposite magnetic field polarity in the photosphere,
but the precise mechanism of its formation is still under active research. Their temperatures
are typically one hundred times lower than those found in the corona, of the order of 104 K,
reason why the prominence plasma is partially ionized instead of fully ionized. In contrast,
they are between one hundred and one thousand times denser than the corona, with densities
of the order of 10−12 to 10−10 kg m−3. Their heights are of the order of 104 km, their widths
vary between 4 and 30 thousand kilometers and their lengths are of the order of 105 km.

Filaments are the same type of feature than prominences. The only differences between
both are their position in the Sun and their brightness when compared to the surrounding
background: prominences extend from the limb of the Sun and appear bright in comparison
with the space in the background. On the other hand, filaments are located over the solar disk
and show up as dark lines. An example of the appearance of a filament is shown on the right
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panel of Figure 1.7. Prominences and filaments can be classified in two categories: quiescent
and active. The quiescent class is more stable and can have lifetimes of up to several months.
A typical value of the magnetic field strength in these structures is 10 G. Active prominences
form faster, are associated with sunspot groups and have much shorter lifetimes, of minutes
to hours. They also have stronger magnetic fields. Some prominences may suffer an eruption,
detaching from the Sun and ejecting their material into space. More detailed portrayals of the
properties of these structures can be found in, e.g., Labrosse et al. [2010], Mackay et al. [2010]
or Parenti [2014].

Figure 1.7: Left: image of a prominence extending from the limb of the Sun (Credit: Gary
Palmer / Royal Museums Greenwich). Right: Hα image of a filament (Credit: Y. Lin).

The first historical record of the description of a solar prominence appears in the Laurentian
Codex or Chronicle of Novgorod, written in the 14th century by Russian monk Laurentius (see,
Sviatsky [1923]). In that text, the solar eclipse of 1 May 1185 is mentioned as follows: “In
the evening there was a sign on the Sun. The night fell on the Earth and stars could be seen
[...]. The Sun became like the Moon and from the horns of the crescent came out somewhat
like live embers”. However, as it occurs with many aspects of the Sun, most of what is known
about prominences has been discovered in the last twenty or thirty years. Earlier observations
like those analyzed in de Jager [1959] or Kuperus and Tandberg-Hanssen [1967] suggested that
prominences and filaments have a fine structure. Nevertheless, this fact was not confirmed until
more recent observations with higher resolution were performed (Lin et al. [2005], Heinzel and
Anzer [2006], Lin et al. [2007], Okamoto et al. [2007], Berger et al. [2008]) and showed that
prominences are composed of long and thin threads or fibrils. The width of the threads is about
200 km and its length vary from ∼ 3500 to ∼ 28, 000 km. The fine structure of prominences can
be noticed in Figure 1.8, an image obtained in Hα, which is caused by the radiation emitted
by neutral hydrogen when its electron falls from the third to its second lowest energy level.
This line, whose wavelength is 656.3 nm, appears in the red part of the visible range of the
electromagnetic spectrum.

Observations in Hα, ultraviolet (UV) and extreme-ultraviolet (EUV) lines also reveal a
rich dynamics in prominences and filaments. For instance, mass flows along the threads axes
and transverse to them have been frequently reported (Engvold [1976, 1981], Zirker et al.
[1994], Lin et al. [2003, 2005], Chae et al. [2008], Schmieder et al. [2010]). The typical speeds
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Figure 1.8: Threads of a quiescent filament observed with the Swedish 1-m Solar Telescope.
From Lin [2011].

of the flows in quiescent filaments vary from 5 to 30 km s−1, while higher speeds have been
detected in active region prominences: Chae et al. [2000] reported motions with speeds of up
to 40 km s−1 and, later, Chae [2003] detected jet-like and eruptive behaviors with speeds from
80 to 250 km s−1. The presence of flows may lead to the appearance of instabilities like the
Kelvin-Helmholtz instability (see, e.g., Soler et al. [2012b]). More details about this instability
and how is affected by partial ionization are given in Chapter 6 of this Thesis.

In addition to the mass flows mentioned in the previous paragraph, oscillatory motions
have also been detected in prominences and filaments. The first observations of this kind of
motion correspond to what is now known as large-amplitude oscillations, which are typically
caused by disturbances coming from flares. The relation between large-amplitude oscillations
and nearby flares was demonstrated by Moreton and Ramsey [1960]: waves propagating at
speeds between 500 and 1500 km s−1 impact on prominences and cause them to vibrate during
a few periods with amplitudes of the order of 20 km s−1. These oscillations, which are global,
i.e., affect the whole prominence, are quite rare events, although in the last years a growing
number of observations has been reported (Eto et al. [2002], Jing et al. [2003], Okamoto et al.
[2004], Gilbert et al. [2008], Luna and Karpen [2012]). However, the nature of large-amplitude
oscillations is still poorly understood. More details about the research on this subject can be
found in Tripathi et al. [2009]. The topic of large-amplitude waves in partially ionized plasmas,
with an application to the particular case of a quiescent prominence, is addressed in Chapter 5
of the present Thesis.

Prominences are also subject to oscillatory motions of small amplitude, which have been
commonly interpreted in terms of standing or propagating magnetohydrodynamic (MHD)
waves. This kind of oscillations were first detected in quiescent structures by Harvey [1969],
who measured amplitudes of the order of 2 km s−1. With the improvement of the observing
techniques and of the resolution of the instruments, a wider range of oscillations were detected
(see, e.g., Landman et al. [1977], Bashkirtsev et al. [1983], Bashkirtsev and Mashnich [1984],
Wiehr et al. [1984], Balthasar et al. [1986]), which lead to classify them in three categories
according to their periods: short (3 to 10 min), intermediate (10 to 40 min) and long (40 to 80
min). Nonetheless, oscillations with periods of less than 1 min (e.g., Balthasar et al. [1993]) and
longer than several hours (e.g., Foullon et al. [2004], Pouget et al. [2006], Foullon et al. [2009])
have also been reported. Small-amplitude oscillations are typically of local nature, i.e., they
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do not normally affect the whole prominence at the same time and different parts of a given
structure may show dissimilar oscillatory motions. Usually, they are not related to flare activity
but the mechanism that triggers them remains unknown. They may be produced by a continu-
ous driver like the 5-min photospheric and the 3-min chromospheric oscillations, or by external
impulsive agents, like magnetic reconnection events (Vial and Engvold [2015]). Authors like
Harvey [1969] or Yi and Engvold [1991] suggested that Alfvén waves propagate upwards from
the photosphere and the chromosphere and induce a periodic motion in the material of the
prominence.

Observations by, e.g., Landman et al. [1977] and Tsubaki and Takeuchi [1986] hinted that
small-amplitude oscillations are damped in time and they disappear after a few periods. This
behavior was confirmed by later works like Wiehr et al. [1989], Molowny-Horas et al. [1999],
Terradas et al. [2002] or Lin [2004]. To address that behavior, several damping mechanisms,
such as thermal processes (see, e.g., Carbonell et al. [2004], Terradas et al. [2005]), ion-neutral
collisions (Forteza et al. [2007, 2008]), resonant damping (see, e.g., Ionson [1978], Arregui et al.
[2008], Soler et al. [2009b]) or wave leakage (van den Oord and Kuperus [1992], Schutgens
[1997a,b]), have been proposed. The state of the research about this issue has been reviewed
by, e.g., Oliver [2009], Mackay et al. [2010], Arregui and Ballester [2011] or Arregui et al. [2012].

Among all the mentioned mechanisms, this Thesis focuses on the collisional damping. The
effect of the interaction between ions and neutrals was previously investigated by, e.g., Carbonell
et al. [2010], Zaqarashvili et al. [2011b] and Soler et al. [2013a]. Those authors found that
friction due to ion-neutral collisions can efficiently dissipate Alfvén and fast MHD waves, while
the damping of slow modes is much smaller. However, they did not explore the range of
high-frequency waves, which is one of the motivations of this Thesis. Hence, Chapter 4, where
small-amplitude waves in partially ionized plasmas are studied by means of a multi-fluid model,
includes applications to the case of quiescent prominences.

1.3.3 Waves in the corona

Uchida [1970] suggested the study of MHD propagating waves as a method to investigate the
properties of the corona and the structures that can be found in such environment. Roberts
et al. [1984] broadened the research by including the analysis of standing waves. Those two
works were the pioneers of a new field in solar physics now known as coronal seismology. This
field tries to obtain a better understanding of the physical characteristics of the coronal plasma
by comparing properties of the waves (like periods, amplitudes, wavelengths or damping times)
extracted from observations with those predicted by theoretical models.

In the earlier times of coronal seismology, most of the information about the corona was
obtained during eclipses (see, e.g., Liebenberg and Hoffman [1974]) or from observations in the
radio band. Some of those early results are reviewed in Aschwanden [1987], Tsubaki [1988]
and Aschwanden et al. [1999]. Although the first observations from space were not of high
resolution, some hints of oscillations were provided by the measurements of the OSO-7 and
Skylab satellites in extreme-ultraviolet lines and X-rays (Chapman et al. [1972], Antonucci
et al. [1984]). From the theoretical perspective, Wentzel [1979], Edwin and Roberts [1983] and
Roberts et al. [1984] developed models of oscillations for cylindrical coronal tubes and studied
the properties of waves that can propagate in such tubes. However, the full development of the
field of coronal seismology had to wait until better instruments and more precise measurements

29



1.3. STRUCTURES AND DYNAMICS IN THE SOLAR ATMOSPHERE

were available.
The launch of the SOHO and TRACE spacecrafts in the mid and late 90s gave a huge

impulse to the research of waves in the corona. The imaging and spectroscopic capacities of the
instruments aboard those two satellites allowed the indubitable demonstration of the existence
of wave-like dynamics in the corona (see, e.g., Ofman et al. [1997], DeForest and Gurman [1998],
Nightingale et al. [1999]). For example, the first spatially resolved observations of oscillations
in coronal loops were provided by TRACE (Schrijver et al. [1999], Aschwanden et al. [1999]).
Coronal loops are bright arcs of plasma above the Sun’s surface (an example of this kind of
structure can be found in Figure 1.9). They are usually found around sunspots and in active
regions, and are associated with closed magnetic lines that connect regions of opposite magnetic
polarity on the solar surface.

Figure 1.9: Coronal loop observed by the TRACE satellite (Credit: NASA).

Subsequent observations with SOHO and TRACE allowed the identification of several oscil-
lations modes of MHD waves in loops. For example, Aschwanden et al. [1999] detected standing
fast kink modes with periods between 3 and 5 minutes, Wang et al. [2002] and Kliem et al.
[2002] reported standing slow modes with periods between 10 and 20 minutes. Propagating
MHD waves have also been observed. For instance, DeForest and Gurman [1998], Berghmans
and Clette [1999] and Robbrecht et al. [2001] measured slow waves propagating upwards along
the loop at speeds of 75 to 200 km s−1, and Verwichte et al. [2005] detected fast kink waves with
speeds between 100 and 500 km s−1. In addition, observations with the Coronal Multi-Channel
Polarimeter (CoMP), installed in the High Altitude Observatory (HAO) in Colorado, revealed
the existence of disturbances with Doppler velocity fluctuations of the order of 0.3 km s−1 in
extended regions of the corona, from 1.05 to 1.35 R⊙. They were interpreted as Alfvén waves
propagating along the coronal magnetic field, with phase speeds between 1000 to 4000 km s−1

(Tomczyk et al. [2007], Tomczyk and McIntosh [2009]). Finally, even more recent spacecrafts,
such as Hinode or SDO, have shown that Alfvén waves are common in the transition region
and the corona (McIntosh et al. [2011], De Pontieu et al. [2011]).

In contrast with the plasma in the chromosphere or in prominences, the material in the
solar corona is fully ionized. Hence, the properties of waves in this environment would not
be affected by the presence of neutrals. Nevertheless, multi-fluid models (see, e.g., Labrosse
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et al. [2006], Mecheri and Marsch [2008]) are still required under circumstances in which single-
fluid descriptions do not give accurate results, such as in the range of high frequecies. A
great number of ionized species can be found in the corona and, for instance, the collisional
interaction between them may be of great relevance. The effect of the Coulomb interaction
between charged species on the properties of Alfvén and high-frequency waves is addressed in
Chapter 3 of this Thesis, which is devoted to the study of small-amplitude waves in fully ionized
plasmas.

1.3.4 Solar wind

The solar wind is an unceasing stream of charged particles emanating from the Sun. The
existence of such feature was suggested early in the 20th century by Eddington [1910]. However,
it was Parker [1958] the first person to refer to such stream as solar wind. He studied an
equilibrium model of the structure of the corona and showed that, although Sun’s gravity is
strong, the enormous temperatures of the corona allowed the particles to escape from the solar
atmosphere due to their large thermal velocities. The first direct observations of the solar wind
were performed by the Soviet satellites Luna 1, 2 and 3 (Gringauz et al. [1960]). In the last
years, the Voyager missions have revealed that this stream of particles extends far beyond the
outermost planets of the Solar System.

Magnetohydrodynamics waves have been detected in the solar wind also. For example, the
presence of Alfvén waves was suggested by Coleman [1966] and later confirmed by Unti and
Neugebauer [1968], Belcher et al. [1969] and Belcher and Davis [1971]. Then, Burlaga [1968],
Whang and Ness [1970] and Burlaga [1971] presented evidences of fast waves propagating
obliquely to the background magnetic field. A review about those observations, the properties of
the waves and their implications for the heating and acceleration of the solar wind can be found
in Hollweg [1975]. Higher-frequency waves, like the ion-cyclotron and whistler waves, which are
left-handed and right-handed circularly polarized modes, respectively, with frequencies close to
the cyclotron frequencies of ions, have also been detected in this environment (see, e.g., Murphy
et al. [1995] and Farrell et al. [1996]). The rich variety of oscillations modes that have been
observed has led to a large number of works devoted to investigate the influence of those waves
in issues like the heating or the acceleration of the solar wind (see, e.g., Ofman [2010], Banerjee
and Krishna Prasad [2016]). For example, it has been suggested that the dissipation of Alfvén
and ion-cyclotron modes and the phenomena of cyclotron resonance may play an important role
in the mentioned issues (Tu and Marsch [1997], Hollweg and Markovskii [2002]). In addition,
the generation of the solar wind by ion-cyclotron waves was studied by, e.g., Isenberg and
Vasquez [2011] and Mecheri [2013].

In the same way as the solar corona, the solar wind is fully ionized and, although heavier
elements can be found in it, the most abundant species are protons, doubly ionized helium, and
electrons. Hence, the application of the multi-fluid model developed in this Thesis to the case
of waves in the solar wind is shown in Chapter 3.

1.4 Outline of the Thesis

The previous sections have enumerated several reasons why the study of the Sun, and its at-
mosphere in particular, is of great interest. Waves are ubiquitous in such environment and are
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deeply related to fundamental processes that take place in the Sun. The general characteris-
tics of such processes are known in most of the cases but more specific details are yet to be
determined and there are still open questions. The answers to those issues cannot be reached
without a better understanding about the generation and propagation of waves. Hence, the
goal of this Thesis is to make a step forward by investigating some of the effects that collisions
between different species have on the properties of waves and instabilities. The main focus is
put on partially ionized plasmas of the solar atmosphere and on the low-frequency Alfvén modes
and the high-frequency ion-cyclotron and whistler modes, in addition to the Kelvin-Helmholtz
instability. The following paragraphs describe how the research performed in this Thesis is
organized:

• Chapter 2 presents the equations that will be used throughout this Thesis and explains
the reasons why that set of equations has been chosen instead of other alternatives. There
are two main descriptions that can be used in the investigation of plasmas, namely kinetic
and fluid theories. The results presented in this Thesis are based in the latter, the fluid
approach. Within such description, there are several approximations that can be taken,
depending on the degree of accuracy that may be needed to explain the properties and
evolution of a given fluid. Moreover, even when they may be composed of various distinct
species, plasmas can be analyzed from a single-fluid or a multi-fluid perspective. This
work is based on a multi-fluid approach where each species is described by the so-called
five-moment approximation, with the inclusion of the corresponding momentum and heat
transfer terms due to elastic collisions. The interaction with electromagnetic fields is
taken into account by a generalized Ohm’s law.

• The non-linearity of the model chosen for this research allows the study of perturbations
with both small and large amplitudes. In this Thesis, such studies are performed by
a combination of analytical methods and numerical simulations. The investigation of
small-amplitude perturbations starts in Chapter 3, where a general dispersion relation
for transverse waves in static homogeneous multi-component plasmas is derived and the
details of the numerical code MolMHD are explained. Then, Chapter 3 focus on fully
ionized plasmas and the effects that Coulomb collisions have in the propagation and
damping of low- and high-frequency Alfvénic waves and on ion cyclotron resonances. In
this chapter, the multi-fluid model is applied to three regions of the solar atmosphere: an
upper layer of the chromosphere, the lower corona and the solar wind at a distance of 1
AU.

• Chapter 4 continues with the investigation of small-amplitude perturbations, but applied
to the more general case of partially ionized plasmas. In addition, the effects of resistivity
or magnetic diffusivity, which were previously ignored, are taken into account. Following
a similar procedure to that presented in the preceding chapter, the multi-fluid approach
is used to analyze the properties of waves at several heights of the chromosphere and in
a quiescent prominence. A comparison of the damping caused by the different collisional
interactions (Coulomb and ion-neutral elastic collisions, and resistivity) and their depen-
dence on frequency, wavenumber and polarization of the perturbation is performed. In
addition, the great influence of Hall’s current in weakly ionized plasmas is studied. Fur-
thermore, a non-linear effect is briefly analyzed: the dissipation of kinetic energy of the
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initial perturbation and its transformation into internal energy of the plasma by means
of the collisional friction.

• Chapter 5 is devoted to the investigation of large-amplitude perturbations. In the first
place, numerical simulations of standing waves excited by an impulsive driver in a plasma
with prominence conditions are performed. In contrast with the small-amplitude case,
it can be seen that noticeable fluctuations in the pressure and density of the plasma
are generated. This fact is explained in terms of the ponderomotive force created by
non-linear Alfvén waves, and comparisons between the fully and partially ionized cases
are performed. Then, the heating due to ion-neutral collisions caused by a Gaussian
perturbation is studied as a function of its width.

• And last but not least, in Chapter 6, a simplified version of the multi-fluid model is applied
to the investigation of the Kelvin-Helmholtz instability in partially ionized magnetic flux
tubes. A two-fluid approach is used to study the properties of waves in cylindrical promi-
nence threads made of protons and neutral hydrogen when they are subject to shear flows.
The influence of the collisional coupling on the onset of the instability is analyzed and
comparisons between the growth times of the instability and typical lifetimes of threads
are performed.

Finally, the last pages of this Thesis present a brief summary of the obtained results, out-
lining the main conclusions of the research described in the previous chapters, and a discussion
of possible lines of future work.
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Formal description of plasmas
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Chapter 2

Multi-fluid theory

2.1 Motivation for a multi-fluid theory

The most fundamental description that has been developed in the research of plasmas is the
kinetic one, an extension of the kinetic theory of gases. This description is of statistical nature,
i.e., it can be applied when a large number of particles is present in the system of interest. It
is based on the use of a distribution function, f(x, v, t), that describes how the particles are
allocated at a given time throughout the phase space, that is the space of all possible values
of position, x, and velocity, v. Then, the dynamics of each species s of the plasma is obtained
by solving the Boltzmann transport equation, which describes the statistical behavior of a
thermodynamic system. This equation is given by

∂fs

∂t
+ vs · ∇fs +

F

ms
· ∇vs

fs =

(
∂fs

∂t

)

collisions

, (2.1)

where ∇vs
is the gradient in the velocity space, i.e., ∇vs

≡ (∂/∂vs,x, ∂/∂vs,y, ∂/∂vs,z)
T . The

function F is the sum of forces acting on the particles, whose mass is given by ms. The term in
the right hand side accounts for the variation in the distribution caused by collisions between
particles. Macroscopic quantities such as number densities, velocities and pressures can then
be obtained by integrating over velocity space the resulting distribution function. For instance,
the number density and the average velocity are defined as

ns (x, t) ≡
∫

fs (x, v, t) d3v (2.2)

and

us ≡ 1

ns (x, t)

∫
vsfs (x, v, t) d3v, (2.3)

respectively.
The kinetic approach is the most accurate but, due to its complexity, it is not the most

efficient under some circumstances in which there are alternatives that yield the same results
by means of much simpler computations. One of such alternatives is the MHD theory, which is
based on macroscopic quantities instead of distribution functions. In magnetohydrodynamics,
the plasma is treated as a continuum, which means that the length-scales of its dynamics is
larger than the cyclotron radii. It is also assumed to be in thermodynamic equilibrium, i.e.,
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the time-scales are much larger than the collision times between the components of the plasma
and the length-scales are also larger than the mean free path of the particles. Regarding the
investigation of oscillatory motions, ideal MHD is applicable when the frequencies of the waves
are much lower than the electron and ion plasma frequencies, ωpe and ωpi, respectively, and the
ion gyrofrequencies. The latter are given by Equation (1.14), while the former are computed as

ωpe,i =

√
ne,iZ

2
e,ie

2

ǫ0me,i
, (2.4)

and represent the rate at which electrons and ions react to changes in the electrostatic potential.
The two descriptions mentioned in the previous paragraphs are not unrelated, but the fluid

approach can be derived from the kinetic theory. The fluid equations that rule the evolution of
macroscopic quantities like the density, velocity, pressure and energy can be obtained by taking
velocity moments of the Boltzmann equation (see, e.g., Braginskii [1965], Bittencourt [1986],
Meier [2011], Khomenko et al. [2014]).

Since its origin with the prediction by Alfvén [1942] about the existence of low-frequency
waves driven by magnetic tension, ideal MHD has become a remarkable successful theory
for understanding the general properties of plasmas. For instance, Alfvén’s prediction was
soon experimentally confirmed in a laboratory by Lundquist [1949] and corroborated later
by Lehnert [1954] and Jephcott [1959]. Then, Alfvén waves have also been found in Earth’s
aurora (Chmyrev et al. [1988]), in planetary ionospheres (Berthold et al. [1960], Gurnett and
Goertz [1981]), the interstellar medium (Arons and Max [1975], Balsara [1996]), and in the
solar atmosphere, as already mentioned in Section 1.3.

However, ideal MHD is not accurate enough when applied to the investigation of waves
with higher frequencies, which in the solar atmosphere may be driven by small-scale magnetic
activity in the chromospheric network and reconnection of field lines (Axford and McKenzie
[1992], Tu and Marsch [1997]) or by cascading from low frequencies in the corona (Isenberg and
Hollweg [1983], Tu [1987]). Ideal MHD resorts to simplifications such as treating the plasma
as if it were fully ionized, that is ignoring the possible presence of neutral particles, neglecting
Hall’s term in the induction equation and considering all ionized species together as a single
fluid. Those approximations are reasonable when the frequencies of the oscillations are much
lower than the collision frequencies between the different species in the plasma. In that case,
collisions cause a strong coupling between all species and they can be treated as a single-fluid.

On the other hand, when the oscillation frequencies are larger (or, equivalently, when the
relaxation time of collisions between unlike species is much larger than the period of the waves),
each species may react to perturbations in different time-scales and the coupling is weaker than
before. At that range of frequencies, the use of a multi-fluid theory is more appropriate. The
multi-fluid approach consists in a set of equations for each species of the plasma, with addi-
tional terms that describe the interactions between them. Depending on the specific equations
employed and the interactions considered, a multi-fluid model may be applicable up to frequen-
cies of the order of the ion-cyclotron frequencies, but does not reach the range of electron or
ion plasma frequencies, in which the kinetic theory is required. Nevertheless, the applicability
range of the multi-fluid theory is enough to study the phenomena of interest for this Thesis.
Hence, in the present work a multi-fluid model that takes into account the effect of partial
ionization, Hall’s current and resistivity is used. The equations that compose such model are
detailed in the following section.
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2.2 Equations for a multi-component plasma

The investigation of plasmas under the multi-fluid perspective requires the combination of
the hydrodynamic equations that describe the evolution of each species in the plasma with
Maxwell’s equations, which detail the evolution of electromagnetic fields, and some closure
equations that are given by the thermodynamic equation of state of each species.

2.2.1 Five-moment transport equations and collisional terms

The dynamics of a given fluid is described by the set of so-called transport equations that
can be obtained by taking velocity moments of the Boltzmann equation, that is multiplying
Equation (2.1) by powers of vs and integrating over velocity space. Due to the complexity
of this process, the computations are not shown here, only the resulting equations. They do
not constitute a closed set and, hence, the adoption of an approximate expression for the fluid
velocity distribution is required (Schunk [1977]). In this work, a Maxwellian distribution is
chosen, i.e.,

fs = ns

(
ms

2πkBTs

)3/2

exp

(−msṽ
2
s

2kBTs

)
, (2.5)

where ns, ms, and Ts are the number density, mass and temperature of the species s. The
variable ṽs is the random part of the velocity and is defined as ṽs ≡ vs−us, where us is the av-
erage part of the velocity. This choice, which is valid when the fluid is close to thermodynamic
equilibrium, leads to the five-moment transport approximation, where the dynamics of each
species is given by the conservation equations for mass, the three components of momentum
and energy, and effects like thermal diffusion, thermal conduction or anisotropy of pressure are
neglected. The influence of stress and heat flows can be considered by assuming a more compli-
cated function for the velocity distribution and taking a higher-order moment approximation,
at the expense of more complex computations. Nevertheless, the five-moment approximation
is accurate enough for the investigation developed in this Thesis.

The equation for the conservation of mass, also known as mass continuity equation, is given
by

D(msns)

Dt
+ msns∇ · Vs = 0, (2.6)

where Vs is the velocity of species s and D
Dt

≡ ∂
∂t

+ Vs · ∇ is the material derivative for time
variations following the plasma motion.

The equation of motion, which expresses the conservation of momentum, is given by

msns
DVs

Dt
= −∇Ps + F , (2.7)

where Ps is the thermodynamic pressure, which has been assumed to be isotropic, and the
term F includes all the forces (actually, force densities) that may act on the fluid, such as the
Lorentz force felt by charged particles, gravity or the variation of momentum due to collisions
with the other components of the plasma.

The Lorentz and gravity force densities are given by

FL = qsns (E + Vs × B) (2.8)
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and
Fg = msnsg, (2.9)

respectively, where qs = Zse is the electrical charge, with Zs the signed charged number and
e the elementary electric charge. E, B and g are the electric and magnetic fields and the
acceleration of gravity, respectively. The collisional interaction is represented by the term∑

t6=s Rst, whose precise definition is given later.
For numerical purposes, it is useful to write the mass continuity and the momentum equa-

tions in conservative form. In this way, the left-hand side of the equation consists of the
temporal evolution of the quantity that is conserved plus the divergence of a certain flux. The
right-hand side corresponds to a source term (which may be equal to zero). Therefore, due to
the definition of the material derivative, Equation (2.6) is equivalent to

∂(msns)

∂t
+ Vs · ∇ (msns) + msns∇ · Vs = 0, (2.10)

which can be rewritten in conservative form as

∂(msns)

∂t
+ ∇ · (msnsVs) = 0. (2.11)

Likewise, the left-hand side of Equation (2.7) can be expressed as

msns
∂Vs

∂t
+ msnsVs · ∇Vs =

∂ (msnsVs)

∂t
− Vs

∂ (msns)

∂t
+ msnsVs · ∇Vs. (2.12)

Taking into account that, according to Equation (2.11), ∂(msns)
∂t

= −∇ · (msnsVs) and using
vector identities, the expression above is equivalent to

∂ (msnsVs)

∂t
+ ∇ · (msnsVsVs) , (2.13)

where VsVs is a dyadic product, which can be written in matrix form as

VsVs =




V 2
s,x Vs,xVs,y Vs,xVs,z

Vs,yVs,x V 2
s,y Vs,yVs,z

Vs,zVs,x Vs,zVs,y V 2
s,z


 . (2.14)

Hence, the conservation of momentum can be finally expressed as

∂ (msnsVs)

∂t
+ ∇ · (msnsVsVs + PsI) = qsns (E + Vs × B) + msnsg +

∑

t6=s

Rst, (2.15)

where the pressure term in the right-hand side of Equation (2.7) has been moved to the left-hand
side and the relation ∇Ps = ∇ · (PsI), with I the identity matrix, has been used.

The last equation of the five-moment approximation concerns the conservation of energy.
For the purposes of this Thesis, it will be expressed in terms of the pressure, in the following
way:

∂Ps

∂t
= − (Vs · ∇)Ps − γPs∇ · Vs + (γ − 1)

∑

t6=s

Qst, (2.16)
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where γ = 5/3 is the adiabatic constant for mono-atomic ideal gases and Qst is the term that
takes into account the variation of energy caused by the collisional interaction with the rest
of the species. Since pressure is not a conserved quantity, this equation cannot be written in
conservative form.

There are several reasons to solve this equation in terms of the pressure instead of a related
quantity. For instance, it is straightforward to compute the internal energy density of each
species s, denoted by eP,s, from the pressure since those variables are related by the following
formula:

eP,s =
Ps

γ − 1
. (2.17)

An alternative approach commonly used in single-fluid models is to solve one equation for the
total energy density, which is the sum of the kinetic, internal and magnetic energy densities. In
this approach, numerical issues may appear when computing the pressure from the total energy.
Pressure must have always positive values but, in the process of subtracting the kinetic and
the magnetic energy from the total energy, negative values may be obtained due to unwanted
numerical effects. In the multi-fluid formalism used in this Thesis, there is not a unique equation
that accounts for the conservation of the total energy of the plasma but several equations
connected to the temporal evolution of the internal energy of the different species. Nevertheless,
the total energy is a conserved magnitude, which is given by

ET =

∫

V

[
∑

s

(
eP,s +

1

2
msnsV

2
s

)
+

B2

2µ0

]
dV, (2.18)

where V is the volume of the plasma.
The functions Rst and Qst represent the momentum and the heat transfer due to elastic

collisions between two species s and t, and are defined as (see, e.g., Schunk [1977], Draine
[1986], Leake et al. [2014], Khomenko et al. [2014])

Rst ≡ αst (Vt − Vs)Φst, (2.19)

and

Qst ≡
2αst

ms + mt

[
Ast

2
kB (Tt − Ts)Ψst +

1

2
mt (Vt − Vs)

2 Φst

]
, (2.20)

respectively, where Ast = 4 for collisions between electrons and neutral species and Ast = 3 for
the remaining types of collisions. The difference in the values of Ast is a consequence of the
different velocity dependence used to calculate the scattering cross-sections of each interaction.
A detailed explanation can be found in Draine [1986]. The parameter αst = αts is the friction
coefficient for collisions between species s and t. The mass, temperature and velocity of species
s are denoted by ms, Ts and Vs, respectively and kB is the Boltzmann constant. From the
definition of the momentum transfer term it can be checked that Rts = −Rst, which means
that the momentum lost by one of the species involved in a binary collision is gained by the
other one, and viceversa. The functions Φst and Ψst depend on the drift speed, |Vs − Vt|, and
on the reduced thermal speed, Vtherm ≡

√
2kB (mtTs + msTt) / (msmt), and can be taken as

equal to unity when the drift speed is much smaller than the thermal speed (Schunk [1977]).
Although collisions tend to heat the plasma, the precise effect on each species depends on
which of the two terms of the right-hand side of Equation (2.20) dominates. If the difference
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of temperature between the species s and t is large enough, the first term dominates over that
associated with the velocity drifts. For instance, in a case with Tt > Ts, the heat transfer Qst

would be positive while Qts would be negative. Consequently, the temperature of species s
would rise and the temperature of species t would decrease. This would continue until they had
the same temperatures. Thus, collisions tend to equalize the temperatures of the components
of the plasma. On the other hand, if all the species already have the same temperature, the Qst

terms are always positive because of their quadratic dependence on the velocity drifts, which
means that all the species are heated.

The friction coefficients have different expressions depending on whether the collisions in-
volve only ionized species or also neutral species (Braginskii [1965], Callen [2006]). For the case
of collisions between two ionized species s and t, the friction coefficient is given by

αst =
nsntZ

2
sZ

2
t e

4 ln Λst

6π
√

2πǫ2
0mst (kBTs/ms + kBTt/mt)

3/2
, (2.21)

where ns is the number density of species s, ǫ0 is the vacuum electrical permittivity, and mst =
msmt/ (ms + mt) is the reduced mass. The function ln Λst, known as Coulomb’s logarithm (see,
e.g., Spitzer [1962], Vranjes and Krstic [2013]), represents the factor by which the cumulative
effect of the small-angle Coulomb collisions dominates over large-angle hard-sphere collisions
and is given by

ln Λst = ln

[
12πǫ

3/2
0 k

3/2
B (Ts + Tt)

|ZsZt|e3

(
TsTt

Z2
s nsTt + Z2

t ntTs

)1/2
]

. (2.22)

For collisions between neutral species n and another species s, that can be either neutral or
ionized, the friction coefficient is

αsn = nsnnmsn
4

3

[
8

π

(
kBTs

ms

+
kBTn

mn

)]1/2

σsn, (2.23)

where σsn is the collisional cross-section. Values of this parameter for the collisions in hydro-
gen and helium plasmas are shown in Table 2.1. Some of the cross-sections are taken from
quantum-mechanical models but to the best of our knowledge such accurate computations are
not available for all types of collisions. Hence, in the case that quantum-mechanical computa-
tions are not available, the cross sections have been computed using the classical hard-sphere
model, in which the cross-section of a collision between two species s and t is given by

σst = π (rs + rt)
2 , (2.24)

where rs is the radius of a particle of the species s.
As shown by Vranjes and Krstic [2013], the hard-sphere model may underestimate the

correct values of the cross-sections by one or two orders of magnitude. However, since the
dominant ion in the plasmas studied in the present work is proton, it is not expected that the
use of larger cross-sections for σHHe ii, σHHe iii and σHeHe iii would significantly modify the results
that are discussed in the present Thesis. In addition, it must be noted that the cross-sections
are actually not constants but functions of the temperature. However, according to Vranjes and
Krstic [2013], the variation of the cross-sections in the range of temperatures considered in this
Thesis is small. Consequently, the values included in Table 2.1 are good enough approximations.
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Table 2.1: Cross-sections of collisions with neutral species

Value (m−2) Model
σpH 10−18 Vranjes and Krstic [2013]
σpHe 10−19 Vranjes and Krstic [2013]
σeH 1.5 × 10−19 Vranjes and Krstic [2013]
σeHe 5 × 10−20 Vranjes and Krstic [2013]
σHHe 1.5 × 10−19 Lewkow et al. [2012]

σHHe ii 2 × 10−20 Hard sphere
σHHe iii 1 × 10−20 Hard sphere
σHeHe ii 5 × 10−19 Dickinson et al. [1999]
σHeHe iii 3 × 10−21 Hard sphere

The system given by the five-moment transport equations contains more unknowns than
equations. For each species in the plasma there are five unknowns (number density, three-
components of the momentum and pressure) with their respective five equations. But addi-
tionally, there are other unknowns related to the three components of the magnetic field, the
three components of the electric field and the temperature of each species. Hence, the system
is not closed and must be completed with additional equations. Such equations are presented
in the following sections.

2.2.2 Maxwell’s equations

The properties and the evolution of the electric and the magnetic fields are provided by the
set of four classical electrodynamics relations, known as Maxwell’s equations. Those relations
can be expressed in several mathematically equivalent formulations, but the most useful for
magnetohydrodynamics is the differential formulation, given by the following equations:

∇ · E =
τ

ǫ0

, (2.25)

∇ · B = 0, (2.26)

∇× E = −∂B

∂t
, (2.27)

and

∇× B = µ0j +
1

c2

∂E

∂t
, (2.28)

where the constant c is the speed of light in vacuum and is related to the electric permittivity,
ǫ0, and the magnetic permeability, µ0, by

c2 =
1

ǫ0µ0
. (2.29)

The variables τ and j represent the charge and current density, respectively, which are given
by

τ =
∑

s

qsns (2.30)
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and

j =
∑

s

qsnsVs. (2.31)

The current density can be written in a more compact form, which will be useful for later
calculations, as

j = ene(V − Ve). (2.32)

The velocity V is related to the ions and is given by

V ≡
∑M

i ZiniVi

ne

, (2.33)

where M is the number of ionized species and ne is given by the condition of quasi-neutrality
for a plasma,

∑
s Zsns ≈ 0, so ne ≈

∑M
i Zini.

Equation (2.25), known as Gauss’s law, describes how the electric charges are the sources
of the electric field. The corresponding Gauss’s law for the magnetic field, Equation (2.26),
implies that there are no magnetic monopoles and that the total magnetic flux through a
closed surface is zero, contrary to the case of the electric flux, which is proportional to the total
charge enclosed by the surface. Equation (2.27), known as Faraday’s law, relates the temporal
variation of the magnetic field to the spatial variation of the electric field. Finally, Equation
(2.28) shows that magnetic fields are created by electric currents and by time varying electric
fields.

By restricting to non-relativistic velocities, i.e., v ≪ c, the displacement current term, 1
c2

∂E
∂t

,
becomes negligible and the current density can also be computed as

j =
∇× B

µ0
, (2.34)

an expression that is known as Ampère’s law. The small relevance of the displacement current
in the non-relativistic regime can be checked by comparing the orders of magnitude of the
different terms in the two last Maxwell’s equations. From Faraday’s law, such estimation shows
that

E

L0

∼ B

T0

⇒ E ∼ BL0

T0

, (2.35)

where E and B are some representatives values of the magnitudes of the electric and magnetic
fields, and L0 and T0 are the length scale of spatial variations and the time scale of temporal
variations, respectively. Applying the same procedure to Equation (2.28), it can be seen that

1

c2

∣∣∣∣
∂E

∂t

∣∣∣∣ ∼
1

c2

E

T0
∼ v2

0

c2

B

L0
∼ v2

0

c2
|∇ × B| , (2.36)

where v0 ∼ L0/T0 is a characteristic velocity of the plasma. Thus, since v is assumed to be
much lower than the speed of light, the displacement current can be neglected in comparison
to the spatial variations of the magnetic field. One important consequence of overlooking the
displacement current is that the presence of electromagnetic waves cannot be considered.
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2.2.3 Generalized Ohm’s law and induction equation

In ideal MHD, the electric field becomes a secondary variable that is obtained from Ohm’s law
for a perfectly conducting fluid, which states that the electric field in a frame moving with the
fluid vanishes. Such law is mathematically expressed as

E′ ≡ E + v × B = 0 ⇒ E = −v × B, (2.37)

where E′ is the electric field in the moving frame and v is the velocity of such frame.
The multi-fluid theory follows a similar procedure and makes use of a generalized Ohm’s

law, that can be obtained from the momentum equation for electrons,

∂ (mensVe)

∂t
+ ∇ · (meneVeVe + PeI) = −ene (E + Ve × B) + meneg +

∑

t6=e

Ret. (2.38)

If the variations of momentum of electrons are considered to be negligible (which is justified
by the very small mass of those particles), then the first two terms on the left-hand side of
Equation (2.38) can be neglected and the electric field can be expressed as

E = −Ve × B − ∇Pe

ene
+

me

e
g +

1

ene

∑

t6=e

Ret. (2.39)

The previous equation depends on the velocity of electrons, which is treated in magnetohydrody-
namics as a secondary variable and can be obtained from the formula for the current density. By
rewriting Equation (2.32) as Ve = V −j/ene and taking into account that Ret = αet (Vt − Ve),
the generalized Ohm’s law is transformed into

E = −V × B +
j × B

ene
− ∇Pe

ene
+

me

e
g + ηj +

1

ene

∑

t6=e

αet (Vt − V ) . (2.40)

The second and the third terms on the right-hand side of Equation (2.40) are known as Hall’s
and Biermann’s battery terms. The last two terms in Equation (2.40), where the parameter η
is known as the coefficient of resistivity or magnetic diffusivity and is given by

η =

∑
t6=e αet

(ene)
2 , (2.41)

account for the Ohmic diffusion caused by collisions with electrons. The role and relevance of
several of the terms of the generalized Ohm’s law are discussed below, after the induction equa-
tion for the magnetic field is introduced. This equation can be obtained by combining Equation
(2.40) with Faraday’s and Ampère’s laws. Then, the temporal evolution of the magnetic field
is given by

∂B

∂t
= ∇×

[
V × B − (∇× B) × B

eneµ0
− η

µ0
∇× B − 1

ene

∑

t6=e

αet (Vt − V )

]

+ ∇×
[∇Pe

ene
− me

e
g

]
. (2.42)
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The first term in the right-hand side of the equation above is commonly known as the
convective term. If only this term is taken into account, the resulting expression corresponds to
the induction equation of a perfectly conducting fluid or ideal induction equation. In a perfect
conductor, the magnetic field lines move with the fluid and they are said to be “frozen” in
the plasma. Consequently, motions along the field lines do not modify the field but transverse
motions do. A demonstration of this “frozen-in” condition can be found in, e.g., Section 4.3.3
of Goedbloed and Poedts [2004].

On the other hand, the consideration of any of the remaining terms of Equation (2.42)
produces a departure from the ideal scenario. For instance, due to Hall’s term (the second
term on the right-hand side), ions are not completely frozen to the magnetic field and may
have a different dynamics than that of electrons. When a perturbation is applied to the plasma,
electrons are more able to follow the fluctuations of the magnetic field than ions due to their
smaller inertia. In the case of waves in fully ionized plasmas, the effect of Hall’s term produces a
differentiation in the properties of the left-handed and right-handed circularly polarized waves.
This effect grows when the wave frequency approaches the cyclotron frequencies of ions but
can be neglected when the oscillation frequency is much lower. In partially ionized plasmas,
the presence of neutrals increases the importance of Hall’s effect, specially in weakly ionized
plasmas, as shown by Pandey and Wardle [2006, 2008] and later in this Thesis.

To know under which conditions the terms related to collisions with electrons are required to
correctly describe the evolution of the magnetic field, it is interesting to perform a dimensional
analysis. This procedure leads to the following relations:

|∇ × (V × B)| ∼ v0B

L0

, (2.43)

∣∣∣∣∇×
(

η

µ0
∇× B

)∣∣∣∣ ∼
ηB

µ0L2
0

, (2.44)

where the parameters L0, T0, and v0 have been defined in the previous section. The ratio
between Equations (2.43) and (2.44) is known as the magnetic Reynolds number, Rm, and is
given by

Rm =
µ0L0v0

η
. (2.45)

The influence of the resistive term in the evolution of the magnetic field is comparable to that
of the convective term when Rm ∼ 1. Since η is typically very small in solar plasmas, a low Rm

requires very small values of L0, which correspond to large wavenumbers. Later in this Thesis,
it will be checked that the effect of resistivity is negligible at small wavenumbers but it must
be taken into account at larger wavenumbers.

The Biermann’s battery term, which is the term related to the gradient of pressure, is usually
neglected in the study of solar atmospheric plasmas because its effect is much smaller than the
other terms of the induction equation. It is only relevant when large pressure gradients are
present. Nevertheless, there are other astrophysical scenarios, like the generation of magnetic
fields in the early universe, in which it may have a great relevance since it is a source term for
the magnetic field. Even in the case of a system with no initial magnetic field, the battery term
generates magnetic fields from gradients of electron pressure and density. If only the Biermann
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battery term is considered, the induction equation can be rewritten as

∂B

∂t
= −∇ne ×∇Pe

en2
e

, (2.46)

which shows that magnetic fields can be generated from electron pressure and density gradients
only if those gradients are not parallel.

Magnetic tension and magnetic pressure

If the generalized Ohm’s law is inserted into the momentum equation, Equation (2.15), a term
that is proportional to j × B appears. In the case of single-fluid plasmas, it coincides with
the Lorentz force given by Equation (2.8). However, it must be noted that when multi-fluid
plasmas are considered, the Lorentz force includes additional contributions due to the velocity
drifts between the different ions. In any case, using Ampère’s law, this term can be expressed
as

j × B =
∇× B

µ0

× B, (2.47)

which is equivalent to
(B · ∇) B

µ0
− 1

2µ0
∇ (B · B) . (2.48)

The first term in the previous formula represents the magnetic tension, a force that appears
when magnetic field lines are curved and acts towards their centre of curvature. The second
term can be written as

−∇
(

B2

2µ0

)
= −∇Pm, (2.49)

where Pm is the magnetic pressure. Hence, a plasma is affected by a total pressure given by
the sum of the gas pressure,

∑
s Ps, and the magnetic pressure generated by the magnetic field.

A common parameter used in the investigation of plasmas, known as the plasma β, gives the
ratio between the two kinds of pressures. This parameter is defined as

β =

∑
s Ps

Pm
=

2µ0

∑
s Ps

B2
. (2.50)

If β ≪ 1, a scenario usually found in the solar corona, the Lorentz force dominates over the
gradients of gas pressure.

2.2.4 Equation of state

The last equation required to close the system is an equation of state that establishes a relation
between several of the thermodynamic variables of each fluid. In this work, such relation is
given by the ideal gas law, in which pressure is expressed as a function of the temperature and
the number density, namely

Ps = nskBTs. (2.51)
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2.2.5 Summary of multi-fluid equations

To summarize, the closed set of equations that describe the temporal evolution of a multi-
component plasma is given by

∂ (msns)

∂t
+ ∇ · (msnsVs) = 0, (2.52)

∂ (msnsVs)

∂t
+ ∇ · (msnsVsVs + PsI) = qsns (E + Vs × B) + msnsg +

∑

t6=s

Rst, (2.53)

∂Ps

∂t
= − (Vs · ∇)Ps − γPs∇ · Vs + (γ − 1)

∑

t6=s

Qst, (2.54)

∂B

∂t
= ∇×

[
V × B − (∇× B) × B

eneµ0

− η

µ0

∇× B − 1

ene

∑

t6=e

αet (Vt − V )

]

+ ∇×
[∇Pe

ene

− me

e
g,

]
(2.55)

with the collisional terms given by

Rst ≡ αst (Vt − Vs)Φst, (2.56)

and

Qst ≡
2αst

ms + mt

[
Ast

2
kB (Tt − Ts)Ψst +

1

2
mt (Vt − Vs)

2 Φst

]
, (2.57)

and additional relations between some of the variables given by the expressions

Ps = nskBTs, (2.58)

E = −V × B +
j × B

ene

− ∇Pe

ene

+
me

e
g + ηj +

1

ene

∑

t6=e

αet (Vt − V ) , (2.59)

αst =
nsntZ

2
sZ

2
t e

4 ln Λst

6π
√

2πǫ2
0mst (kBTs/ms + kBTt/mt)

3/2
, (2.60)

ln Λst = ln

[
12πǫ

3/2
0 k

3/2
B (Ts + Tt)

|ZsZt|e3

(
TsTt

Z2
s nsTt + Z2

t ntTs

)1/2
]

, (2.61)

αsn = nsnnmsn
4

3

[
8

π

(
kBTs

ms
+

kBTn

mn

)]1/2

σsn, (2.62)

and

V ≡
∑M

i ZiniVi

ne

. (2.63)
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Waves in multi-component plasmas

49





Chapter 3

Small-amplitude perturbations in fully
ionized plasmas∗

3.1 Introduction

Multi-fluid approaches to describe multicomponent plasmas have been commonly used in aeron-
omy and space physics (see, e.g., Schunk [1977], Barakat and Schunk [1982]). For instance, such
models have been extensively applied to the investigation of Earth’s ionosphere (see, e.g., Gan-
guli and Palmadesso [1988], Konikov et al. [1989], Demars and Schunk [1994], Ganguli [1996])
and the solar wind (Ofman [2004], Echim et al. [2011], Abbo et al. [2016]).

In the case of fully ionized plasmas, applications of multi-fluid descriptions can be found in,
e.g., Weber [1973b,a], Isenberg and Hollweg [1982], Krtička and Kubát [2000, 2001], Cramer
[2001], Hollweg and Isenberg [2002], Li and Li [2007, 2008] or Rahbarnia et al. [2010]. However,
the mentioned works focused only on low-frequency Alfvén waves, considered plasmas composed
of only two distinct ionized species, neglected the possible effects that elastic collisions between
the ionized particles may have on the properties of waves or did not explicitly take Faraday’s
law into account. Hence, a step forward in this research field is to use a more general model
that includes some of the effects that have not been taken into account by those previous works
or that can be applied to plasmas made of a larger number of ionized species.

In the present chapter, the multi-fluid theory described in Chapter 2 will be applied to
fully ionized plasmas composed of up to three distinct ionized species. However, it will be
shown that the generalization of the obtained results to plasmas with a larger number of ions
is straightforward. The goal of this investigation is to study the properties of small-amplitude
perturbations superimposed to a static and homogeneous background. The effect of Hall’s
current will be taken into account and the different species of the plasma will be allowed
to interact by means of Coulomb collisions in addition to the usually considered interaction
through electromagnetic fields. A wide range of frequencies, that goes from the low-frequency
Alfvén waves to the high-frequency ion-cyclotron and whistler modes, will be analyzed. All this
will allow to study the influence that the frictional force arising from elastic collisions has on
the periods and the damping rates of the different oscillation modes and on the resonances and

∗This chapter is based on: Mart́ınez-Gómez, D., Soler, R. and Terradas, J.; 2016, Multif-fluid approach to
high-frequency waves in plasmas. I. Small-amplitude regime in fully ionized medium, The Astrophysical Journal,
832:101 (Mart́ınez-Gómez et al. [2016])
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cutoffs associated to the cyclotron motions of ions. Furthermore, the results will be compared
with the predictions from ideal MHD, with the goal of checking the range of applicability of the
latter and finding under which conditions it becomes inaccurate and the use of the multi-fluid
theory is required.

Two different methods will be used for this investigation. The first one consists in the
analysis of the solutions of the dispersion relation for incompressible linear perturbations that
can be obtained from the set of equations shown in Section 2.2. The derivation of such formula
is detailed in Section 3.2. It must be noted that, although this derivation is performed in a
general way that allows the inclusion of the interaction with neutrals, this effect is not taken
into account in the remaining of the present chapter and is left for Chapter 4. The examination
of the solutions given by the dispersion relation for the cases of two- and three-ion plasmas is
shown in Section 3.3 and 3.4, respectively. The second method consists in the computation
of the full temporal evolution of the perturbations by means of numerical simulations. Such
simulations will be performed by means of the numerical code MolMHD Bona et al. [2009],
which originally solved the MHD equations, but has been extended by adding a new module
to include the multi-fluid equations. The results of this numerical method and the comparison
with the predictions from the dispersion relation will be presented in Section 3.5.

3.2 Derivation of the general dispersion relation

The first step in the derivation of the dispersion relation for incompressible small-amplitude
perturbations in a homogeneous plasma is to assume that each of the variables that characterize
the plasma can be separated into two terms: a constant equilibrium value, which will be denoted
by the subscript “0”, plus a small-amplitude perturbation, denoted by the subscript “1”. Hence,
variables can be written as

ns = ns,0 + ns,1, Vs = Vs,0 + Vs,1, Ps = Ps,0 + Ps,1, E = E0 + E1, B = B0 + B1. (3.1)

Assuming a straight and constant background magnetic field, a uniform static background and
that E0 = 0, the temporal and spatial derivatives of the equilibrium values are equal to zero
and Vs,0 = 0. Then, Vs = Vs,1 and from here on the subscript “1” can be dropped from the
velocity variables. In addition, from Ampère’s law the current density can be expressed as a
function of the magnetic field perturbation only, namely

j =
∇× B1

µ0
. (3.2)

Then, the multi-fluid equations shown in Section 2.2 are linearized by neglecting second-
order products of the perturbed quantities and retaining only those of first order. The resulting
equations are

E1 = −V × B0 +
(∇× B1) × B0

eneµ0
+

η

µ0
∇× B1 +

1

ene

∑

t6=e

αet (Vt − V ) , (3.3)

∂Vs

∂t
=

Zse

ms

(E1 + Vs × B0) +
∑

t6=s

νst (Vt − Vs) , (3.4)
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and
∂B1

∂t
= −∇× E1, (3.5)

where νst = αst/ρs is the collision frequency between two species s and t, and ρs = msns

is the mass density of species s. Note that Equation (3.3) uses the generalized ion velocity
defined in Equation (2.63). The continuity and pressure equations are here ignored because the
perturbations studied in the present and the next chapter do not cause variations of the density
or the pressure in the linear regime and thus ns = ns,0 and Ps = Ps,0. This is also the reason
why the Biermann battery term and the pressure term have been dropped from Ohm’s law and
the momentum equation, respectively. It must also be noted that the effect of gravity has been
neglected as well. The reason to do so is that the wavelengths considered in this research are
shorter than the gravitational scale height.

The insertion of (3.3) into (3.4) and (3.5) leads to

∂Vs

∂t
=

Zse

ms

[
(Vs − V ) × B0 +

(∇× B1) × B0

eneµ0
+ η

∇× B1

µ0

]

+
Zs

nems

∑

t6=e

αet (Vt − V ) +
∑

t6=s

νst (Vt − Vs) , (3.6)

∂B1

∂t
= ∇×

[
V × B0 −

(∇× B1) × B0

eneµ0
− η

∇× B1

µ0
− 1

ene

∑

t6=e

αet (Vt − V )

]
. (3.7)

The next step is to express the temporal dependence of the perturbations as proportional
to exp(−iωt) with the purpose of performing a normal mode analysis, where ω is the frequency
of oscillation. This is also equivalent to assume that the stationary state of wave propagation
is considered. In addition, a Fourier analysis in space is performed by imposing that the
perturbations are also proportional to exp(ik · r), with k the wave vector and r the position
vector.

For the sake of simplicity, to study the properties of perturbations that are transverse to
the direction of propagation, a reference frame in which B0 = (Bx, 0, 0)T and k = (kx, 0, 0)T is
chosen, while the motions of the perturbations are assumed to be in the y and z directions.

The expansion of the components of Equations (3.6) and (3.7) yields to a set of equations
where the y− and z− components are not independent of each other, but they are coupled
and, in principle, it is not possible to study the behavior of the perturbations in one direction
exclusively while ignoring the other direction. The evolution of the x-component, which is
along the background magnetic field direction, is uncoupled from the transverse dynamics in
the linear regime. Thus, the x-component of the perturbations is ignored from here on.

At this point, it is possible to obtain the dispersion relation by rearranging the system
in matrix form and solving the corresponding characteristic equation. However, it is more
convenient to perform some additional steps that, in the end, will simplify the calculations and
give a better insight into the results. By defining the following circularly polarized variables
(see, e.g., Stix [1992], Cramer [2001]),

Vs,± = Vs,y ± iVs,z, B1,± = B1,y ± iB1,z, (3.8)
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where the + corresponds to the left-hand polarization and the sign − corresponds to the right-
hand polarization, the system of equations can be rewritten as

ωVs,± = Ωs

[
± (Vs,± − V±) − kx

eneµ0

B1,±

]
∓ i

η

µ0

Zsekx

ms

B1,± + i
Zs

nems

∑

t6=e

αet (Vt,± − V±)

+ i
∑

t6=s,e

νst (Vt,± − Vs,±) + iνse (V± − Vs,±) ± i
νsekx

eneµ0

B1,±, (3.9)

ωB1,± = −kxBxV± ∓ k2
xBx

eneµ0
B1,± − i

ηk2
x

µ0
B1,± ± i

kx

ene

∑

t6=e

αet (Vt,± − V±) , (3.10)

where Ωs = ZseBx/ms is the cyclotron frequency of species s. Note that the cyclotron frequency
is zero in the case of neutrals.

It can be checked that the two different polarizations are uncoupled. Hence, thanks to those
manipulations, the original problem has been transformed into two independent systems which
are much easier to handle. Now, each system can be expressed in matrix form,

A± · u± = 0, (3.11)

where u± are the vectors of unknowns, which include the velocities of each species, Vs,±, and the
perturbation of the magnetic field, B1,±. For instance, for the case of hydrogen and helium par-

tially ionized plasmas such vectors are given by u± = (Vp,±, VHe ii,±, VHe iii,±, VH,±, VHe,±, B1,±)T

and the coefficients of the matrices A± can be found in Appendix 3.A. The unknown vectors
and coefficients for the investigation performed in the remaining of this chapter, i.e., for the
case of fully ionized non-resistive plasmas, can be obtained from the previous ones by ignoring
the terms related to the neutral species and to collisions with electrons.

Finally, the dispersion relation is the result of solving the characteristic equation for each
matrix,

D± (ω, kx) ≡ det A± = 0. (3.12)

Due to its great number of parameters (e.g., several collision frequencies, the number densi-
ties of each species, the cyclotron frequencies, the wavenumber of the perturbations, etc.), the
expression resulting from the previous calculation is too complex and the usual procedure it will
be solved numerically, although there are some particular cases for which an analytical solution
can be provided. The dispersion relation allows the study of the properties of waves excited by
both an impulsive driver or a periodic driver, depending on whether it is solved as a function
of the wavenumber, kx, or as a function of the frequency, ω±, respectively. It must be noted,
however, that the prescribed temporal dependence of the perturbations, exp(−iωt), removes
the presence of any transitory effect, which means that the wave propagation is assumed to be
in a stationary state.

3.3 Analysis of the dispersion relation for two-ion plas-

mas

We start by considering a simplified scenario. If the contributions of neutral species and resis-
tivity are ignored and only two different kinds of ions are taken into account, the dispersion
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relation given by Equation (3.12) is hugely simplified and can be written as follows:

ω2
±

[
Z2n2 (ρ1ρ2 (ω± ∓ Ω1) + iα12 (ρ1 + ρ2)) + Z1n1

(
ρ1ρ2 (ω± ∓ Ω2) + iα12 (ρ1 + ρ2)

)]

± Bxk
2
x

eµ0

[
ρ1ρ2 (ω± ∓ Ω1) (ω± ∓ Ω2) + iα12 (ρ1 (ω± ∓ Ω1) + ρ2 (ω± ∓ Ω2))

]
= 0. (3.13)

Here, the two types of ions are denoted by the subscripts “1” and “2” to allow a more general
analysis instead of focusing in a certain kind of plasmas. Nonetheless, particular applications
to solar plasmas will be provided later.

One of the main goals of this study is to determine whether collisions between different ions
have a relevant role in the propagation of waves. Hence, it is interesting to compare Equation
(3.13) with the even more simplified version,

ω2
± [Z2n2 (ω± ∓ Ω1) + Z1n1 (ω± ∓ Ω2)] ±

Bxk
2
x

eµ0
(ω± ∓ Ω1) (ω± ∓ Ω2) = 0, (3.14)

which corresponds to the case when the effect of elastic collisions between the two ions is not
included (Weber [1973b], Cramer [2001]), i.e., when αst = 0 in Equation (3.13).

It is also worth comparing the predictions of this two-fluid model with those of ideal MHD.
According to ideal MHD, the results for waves excited by an impulsive driver are equivalent to
those of waves generated by a periodic driver. On the contrary, the two-fluid model predicts
different properties for each class of waves. While the ideal MHD dispersion relation, which is
given by

ω2 = k2
xc

2
A, (3.15)

provides two solutions for each kind of driver, such symmetry does not exist in the multi-
fluid approach. Equations (3.13) and (3.14) are third-order polynomials in the frequency but
only second-order polynomials in the wavenumber. Therefore, three oscillation modes can be
obtained for waves generated by an impulsive driver but only two modes appear when the driver
is periodic.

3.3.1 Impulsive driver

The procedure to analyze the properties of waves excited by an impulsive driver is to solve the
dispersion relation as a function of the wavenumber, kx, which is assumed to be real, while the
solutions for the frequency may have both a real and a imaginary part. Each solution can then
be written in the form ω = ωR + iωI , where ωR is the actual frequency of oscillation and ωI

represents a damping rate of the amplitude of the perturbations if its value is lower than zero
or a growth rate if it is greater than zero. The problems analyzed in the present chapter and
in Chapters 4 and 5 do not include any physical mechanism that could lead to the growth of
the perturbations and to the appearance of instabilities. Hence, in the mentioned chapters, ωI

will be always negative (or, in certain cases, equal to zero). However, Part III of this work is
devoted to the study of instabilities, which means that there the main focus will be put in the
modes with positive values of ωI .

Before solving the dispersion relation numerically, some analytical expressions can be ob-
tained if certain limiting cases are considered. For instance, in the limit of very low wavenum-
bers, i.e., if kxL ≪ 1, where L is a typical length scale of the plasma, one of the three possible
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solutions of Equation (3.13) is

ω± ≈ ±Ω̃ − iα12
ρ1 + ρ2

ρ1ρ2

, (3.16)

where

Ω̃ =
Z2n2Ω1 + Z1n1Ω2

Z1n1 + Z2n2

(3.17)

is the weighted average cyclotron frequency of the ions. This mode is damped because of the
collisions between the two ions, as it can be deduced from the presence of a negative imaginary
part of the frequency that is proportional to the friction coefficient, α12. As it will be shown
later with more clarity, the existence of this mode supposes a difference between the multi-fluid
description and ideal MHD, since it is absent from the latter approach.

To find the other two solutions it is necessary to assume that the oscillation frequency is
similar to the Alfvén frequency, ω± ≈ ωA, and that they are much smaller than the cyclotron
frequencies. The Alfvén frequency is given by ωA = kxcA, where

cA =
Bx√

µ0 (ρ1 + ρ2)
(3.18)

is the two-ion Alfvén speed. After some algebraic manipulations, Equation (3.13) can be
rewritten as

ω2
± ± ω2

A

[(
ω±

Ω1
∓ 1
)(

ω±

Ω2
∓ 1
)

+ iΓ
]

(
ω±

eΩ
∓ 1 + iα12

eΩ

ρ1+ρ2

ρ1ρ2

) = 0, (3.19)

with the function Γ given by

Γ =
α12

ρ1ρ2Ω1Ω2

[
(ρ1 + ρ2) ω± ∓ (ρ1Ω1 + ρ2Ω2)

]
. (3.20)

The corresponding version for the case when elastic collisions between the two ions are neglected
is

ω2
± ± ω2

A

[(
ω±

Ω1
∓ 1
)(

ω±

Ω2
∓ 1
)]

(
ω±

eΩ
∓ 1
) = 0. (3.21)

By following the assumption that ω± ≪ Ω1, Ω2 and Ω̃, two modes with ω ≈ ±ωA are obtained
for each polarization. These solutions correspond to the classic Alfvén wave. Hence, as ex-
pected, the multi-fluid description recovers the classic Alfvén waves of ideal MHD in the limit
of low wave frequencies and no collisions.

Returning to the more general expression of the dispersion relation for two-ion plasmas, i.e.,
Equation (3.13), if one of the number densities is set equal to zero (for instance, n2 = 0), the
equation gets reduced to

ω2
± ± ω2

A1

Ω1
ω± − ω2

A1 = 0, (3.22)

where ωA1 = kxcA1 and cA1 = Bx/
√

µ0ρ1 are the Alfvén frequency and speed for a single-ion
plasma, respectively. This formula corresponds to the dispersion relation for Alfvén waves in
Hall MHD (Lighthill [1960], Cramer [2001]). The ideal MHD formula is obtained when ω± ≪ Ω1

and the second term of the equation can be ignored.
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Actually, in the derivation of the single-ion dispersion relation from the two-ion formula, an
additional term is present, namely (ω± ∓ Ω2). This term multiplies Equation (3.22) and gives
the solutions ω± = ±Ω2. However, they can be neglected since they are spurious solutions
related to a second ion that is not present when a single-ion plasma is considered. They are an
artifact of the mathematical derivation and do not have any physical meaning for this case.

After focusing on some particular limits of interest, the next step is to study the dependence
of Equations (3.13) and (3.14) on an arbitrary wavenumber. The dispersion relations are
expressed in a way that can be applied to any kind of ions. However, hereafter they will be
applied to the study of plasmas that can be found in the solar atmosphere. Three regions that
are worth analyzing are the upper chromospheric region, the lower solar corona, and the solar
wind at 1 astronomical unit (AU). Although those three plasmas share the feature that they are
mostly composed of hydrogen and helium, their physical conditions (temperatures, densities
and magnetic fields) are quite different, which allows the comparison of the results provided by
the multi-fluid theory in a diversity of environments.

Solar corona

Since the abundances of protons and doubly ionized helium are much larger than the abundances
of any other ions in the solar corona and the solar wind (see, e.g., Ahmad [1977], Anders and
Grevesse [1989]), those environment can be taken as good examples of fully ionized two-fluid
plasmas. The case of coronal conditions will be analyzed in the first place.

Some typical parameters for the lower solar corona are np = 2.5× 1014 m−3, nHe iii = 0.1np,
Bx = 10 G, and T = 106 K (see, e.g., Fludra et al. [1999], Sittler and Guhathakurta [1999],
Warmuth and Mann [2005]). With these conditions, the Alfvén speed is cA ≈ 1160 km s−1, and
the collision frequencies are νpHe iii ≈ 0.15 Hz and νHe iiip ≈ 0.39 Hz. The cyclotron frequencies

are Ωp ≈ 96000 rad s−1, ΩHe iii ≈ 48000 rad s1, and Ω̃ ≈ 55900 rad s−1.

The results of introducing the previous parameters into the dispersion relations and solving
them numerically as functions of the wavenumber are shown in Figure 3.1. The normalized real
part of the frequency, ωR/Ωp, and the absolute value of the normalized damping rate, |ωI |/Ωp,
as functions of the normalized wavenumber, kxcA/Ωp, are displayed on the left and the right
panels, respectively.

Only the modes with ωR > 0 are depicted in Figure 3.1: two of them correspond to the
left-hand polarization (and will be denoted by the letter L), while the third corresponds to the
right-hand polarization (denoted by R). The region with ωR < 0 is not plotted because it would
be symmetric with respect to the horizontal axis, but with an exchange of the polarizations of
the modes. In addition, only the solutions from the dispersion relation that takes collisions into
account, Equation (3.13), are shown. The reason to do so are that no clear differences between
the results from the two dispersion relations are appreciable in the real part of the frequency,
i.e., collisions have a small effect on the frequency of the oscillation of the waves, but ωI = 0
when friction is not considered.

The left panel of Figure 3.1 reveals that when kxcA/Ωp ≪ 1, the multi-fluid description
presents two branches with clearly distinct behavior: one of these branches (the red dotted-
dashed line) corresponds to the L mode associated with the weighted average cyclotron fre-
quency given by Equation (3.17). It can be noted that there is no ideal MHD solution akin to
this high-frequency mode, so it appears exclusively when the plasma is treated as composed by
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Figure 3.1: Solutions of the dispersion relations for a two-ion plasma with coronal conditions:
np = 2.5×1014 m−3, npHeiii = 0.1np, Bx = 10 G, Tp = THeiii = 106 K, and νpHeiii = 0.15 Hz. Left:
normalized frequency, ωR/Ωp, as a function of the normalized wavenumber, kxcA/Ωp. Right:
absolute value of the normalized damping, |ωI |/Ωp as a function of kxcA/Ωp. The red lines
correspond to the solutions from Equation (3.13) (solid line: R mode; dashed and dot-dashed
lines: L modes) and the black thin line represents the ideal MHD results (ω = ωA). The dotted
lines on the left panel represent the cyclotron frequency of each ion, with Ωp > ΩHeiii.

several fluids.

The second branch contains the remaining L mode (dashed line) and the only R mode with
ωR > 0 (red solid line). These modes have approximately the same value of the frequency,
ωR ≈ ωA, which means that, in this low wavenumber limit, the frequency of oscillation is
almost independent of the direction of polarization. However, at higher wavenumbers, this
second branch splits into two and the corresponding waves become dispersive: their phase
speeds are not independent of the wavenumber, in contrast to low-frequency waves, which are
non-dispersive.

The L and R modes of the second branch start diverging from each other at kxcA ≃ 0.1Ωp.
The left-hand solution oscillates always with a frequency below the Alfvén frequency and tends
to the cyclotron frequency of the more massive ion, ΩHe iii, in the limit of high wavenumbers.
On the contrary, the oscillation frequency of the right-hand mode is always higher than the
Alfvén frequency, and keeps increasing its frequency without converging to any limiting value
in the range of wavenumbers explored in this study (at even higher wavenumbers it tends to
the electron cyclotron frequency). Due to their behavior when kxcA/Ωp & 1, the two L modes
are commonly known as ion cyclotron waves and the R mode is known as the whistler wave
(see, e.g., Cramer [2001]).

The right panel show that collisions cause a clearly different damping on each mode of
oscillation. The left-handed high-frequency modes are the most affected by the effect of colli-
sions, while the damping on the Alfvénic modes and the high-frequency whistler wave is almost
negligible. The cause of this variety of behaviors can be found in the velocity amplitude ratios
and the phase shifts associated to each mode. This issue will be analyzed with more detail in
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the section devoted to the study of a plasma with chromospheric conditions.
Now, the focus will be put in two other useful parameters for the examination of the behavior

of waves, namely the quality factor and the damping times, which are defined as

Q ≡ 1

2

∣∣∣∣
ωR

ωI

∣∣∣∣ (3.23)

and

τ ≡ 1

|ωI |
, (3.24)

respectively. The damping time represents the time interval in which the amplitude of the
oscillation is reduced by a factor 1

e
≈ 0.368. In turn, the quality factor gives a measure of the

relevance of the damping during an oscillation period. If Q > 1/2, the perturbation is said
to be underdamped: it oscillates, but its amplitude decreases with time; in the limit when
Q → ∞ there is no damping at all. If Q ≤ 1/2 the wave is overdamped (with the special
situation of Q = 1/2 known as critically damped): the damping dominates the behavior of the
perturbation. When Q = 0 the mode is evanescent: there is no oscillation and the amplitude
of the oscillation decays exponentially with time.

From the results shown in Figure 3.1, it is easy to check that for all modes Q ≫ 1, i.e.,
the perturbations are extremely underdamped and the effect of collisions is almost irrelevant
during a single period. However, for longer times the damping may not be negligible. For
instance, by setting the wavenumber to kx = π/105 m−1, the following damping times are
obtained: τ− ≈ τ+,1 ≈ 1.28 × 108 s and τ+,2 ≈ 1.9 s. This means that after a few seconds, the
perturbation related to the latter mode vanishes and only the other two modes of oscillation
remain, almost undamped as if there were no collisions. For much higher wavenumbers, the
situation is different. For instance, if the wavenumber is increased to kx = π/10 m−1 (which
corresponds to the normalized value kxcA/Ωp ≈ 3.8), the damping times are τ− ≈ 670 s,
τ+,1 ≈ 2.1 s, and τ+,2 ≈ 6.34 s. Thus, the perturbations associated with the ion cyclotron
modes disappear after a few tens of seconds, while the whistler wave has a considerably longer
lifespan. In the case where collisions between the two ionized species are not taken into account,
none of the modes attenuates with time.

The wave energy dissipated by the effect of collisions is deposited in the plasma and so
it contributes to plasma heating. However, such effect cannot be captured by the present
linear analysis, since the energy equation has been overlooked. This issue will be studied with
detail in Chapter 5, where large-amplitude nonlinear perturbations will be considered and the
transformation of the kinetic and magnetic energy of the perturbation into heat will be more
noticeable.

Solar wind at 1 AU

The solar wind at 1 AU can be described by the following set of parameters (see, e.g., Aellig
et al. [2001], Laming and Feldman [2003], Goedbloed and Poedts [2004]): np = 107 m−3,
nHeiii = 5 × 105 m−3, Bx ≈ 5 × 10−5 G and T ≈ 105 K, which yields an Alfvén speed of
cA ≈ 31 km s−1, collision frequencies on the order of 10−7 Hz and cyclotron frequencies given
by Ωp ≈ 0.479 rad s−1 and ΩHeiii ≈ 0.239 rad s−1. Then, the dispersion relations give results
for this case that are qualitatively identical to those portrayed in Figure 3.1 for the case of the
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solar corona, with the difference that now the collision frequencies are so minute that the solar
wind can be considered as a completely collisionless fluid from the perspective of this analysis.
Due to the low values of the collision frequencies, the damping times are of the order of 106 s
or larger for a wavenumber kx = π/105 m−1 (which corresponds to the normalized wavenumber
kxcA/Ωp ≈ 2.1), or even greater for lower values of the normalized wavenumber.

As already stated in the previous section, for Alfvénic waves the predictions given by the
multi-fluid approach depart from those of ideal MHD when kxcA/Ωp & 0.1. This fact imposes
a limit to the range of applicability of ideal MHD. From the previous expression, it is possible
to obtain a critical value of wavelength that represents the minimum wavelength that a per-
turbation can have to be reasonably well described by ideal MHD. This critical wavelength is
given by

λc ≈
2πcA

0.1Ωp
. (3.25)

The solar wind conditions lead to a critical wavelength of λc ≈ 4 × 103 km. The respective
value for the solar corona is λc ≈ 750 m.

It must be noted that the approximation used for the functions Φst and Ψst in the momentum
and heat transfer terms, Equations (2.56) and (2.57), is not strictly valid in the solar wind. In
this environment, the drift speed may be comparable to the reduced thermal speed and, hence,
it would be more appropriate to employ the more general expressions for Φst and Ψst given
by Schunk [1977]. However, due to the extremely low value of the collision frequencies, the
application of those more realistic formulae would not modify in a remarkable way the results
explained in the lines above.

Upper chromosphere

One contrasting characteristic of the solar chromosphere in comparison with the two previously
analyzed environments is that it contains a non-negligible quantity of neutrals. However, the
present chapter is devoted to the study of fully ionized plasmas and, hence, the presence of those
neutral species will not be taken into account here but left to be studied in the next chapter.
The chromosphere also differs from the corona and the solar wind in the fact that, throughout
the majority of its extension, the second most abundant ion is the singly ionized helium instead
of the doubly ionized helium. The reason of this dissimilarity is that the temperature is not
large enough for helium to be fully ionized.

A model for the temperatures and abundances of hydrogen and helium as functions of height
of a bright region of the quiet sun chromospheric network is provided by Table 3 (labeled as
Model F) from Fontenla et al. [1993]. Here, the values corresponding to a height of 2000 km
above the top of the photosphere are used, namely np = 1017 m−3, nHe ii = 1016 m−3 and
T = 104 K. A typical value of the magnetic field at that height is Bx = 35 G. Thus, the
Alfvén speed is cA ≈ 204 km s−1, the cyclotron frequencies are Ωp = 335268 rad s−1, ΩHe ii =

83817.1 rad s−1, and Ω̃ = 106676 rad s−1, and the collision frequencies are νpHe ii ≈ 8500 Hz
and νHe iip ≈ 21300 Hz.

Again, Figure 3.1 can be used to describe the qualitative properties of waves in this plasma,
but now it must be taken into account that the collision frequencies are much larger than in the
previous scenarios. Now νst ≃ Ωs/(2π) and the damping produced by the collisional interaction
of the two ions is considerably greater than before. In a plasma with coronal conditions, the
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maximum normalized damping was |ωI |/Ωp ≈ 2 × 10−5, while the corresponding value that is
obtained for chromospheric conditions is |ωI |/Ωp ≈ 0.1, four orders of magnitude larger than
the former before.

In the particular case that the wavenumber is set to kx = π/105 m−1, the Alfvén frequency
is ωA ≈ 6.41 rad s−1 and the dispersion relation yields the following solutions: ω− = ω+,1 ≈
6.41 − i9.27 × 10−6 rad s−1 and ω+,2 ≈ 106676 − i29750 rad s−1. Thus, it can be checked
that the quality factor for the Alfvénic modes is still much greater than 1/2, but for the latter
mode Q ≈ 1.8. The damping times are much shorter than in the previous environments:
τ− = τ+,1 ≈ 106 s and τ+,2 ≈ 3 × 10−5 s. If the normalized wavenumber is increased to values
larger than 0.1, the damping time of all modes is lower than τ = 0.01 s, which means that
all the high-frequency ion cyclotron and whistler waves are extremely short-lived in the upper
chromosphere.

Finally, under the conditions of the plasma studied in this section, the critical wavelength
that puts a limit to the range of applicability of ideal MHD is λc ≈ 40 m. This value is below
the spatial resolution of any currently available instrument.

As stated before, a significant amount of neutrals is present in the chromosphere. Hence,
the results given here should be interpreted with caution, since the effects of the interactions
between ions and neutrals have not been considered.

In the next step of this investigation, the solutions obtained from the dispersion relations are
introduced back to Equations (3.9) and (3.10) with the aim of computing the amplitudes of the
perturbations associated to each mode. In the linear regime, those amplitudes are proportional
to an arbitrary constant whose actual value is not significant. To get rid of that inconvenient
factor, amplitude ratios will be calculated, which provide a better insight on the physics of
the problem. In addition, it is also interesting to compute the phase shifts associated to those
amplitude ratios.

The amplitude ratios |Vp/VHe ii| and the phase shifts, ϕ, are shown in the left and right
panels of Figure 3.2, respectively. It can be seen that the low-frequency waves, which are
represented by the red solid and dashed lines at low wavenumbers when νst 6= 0 and by the
black circles and crosses when νst = 0, have amplitude ratios of the order of unity and phase
shifts that are close to zero. This means that for the given frequencies the magnetic field is able
to keep the two ionized fluids strongly coupled. There is almost no velocity drift and, hence,
the momentum transfer, which leads to the damping of the oscillations, can be neglected even
when collisions are considered.

At higher frequencies, the different inertia and charge number of each species causes them
to have an unlike response to the perturbation and the interaction through the magnetic field
is not enough to maintain the strong coupling. Thus, velocity drifts appear and, consequently,
there is a friction force. The larger the phase drift, the larger the damping caused by the mo-
mentum transfer between ions. The modes with larger phase shifts are left-handed polarized.
The reasons are that L-modes are affected by the resonances that appear when the oscillation
frequency reaches the cyclotron frequencies and that the species with a larger cyclotron fre-
quency can follow the perturbations of the magnetic field more easily than the other species
throughout a larger range of frequencies. More details of the cyclotron resonances are given in
the next section.

Figure 3.2 can also be applied to the cases of the solar corona and the solar wind, but taking
into account that the amplitude ratios and the phase shifts are well described by the collisionles
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Figure 3.2: Ratio of amplitudes (left) and phase shift (right) of the velocities of ions computed
from the solutions of Equations (3.13) (red lines, with the same style code as in Figure 3.1) and
(3.14) (black symbols) for a two-ion plasma with upper chromospheric conditions. Note that
the black crosses are not shown in the right panel: the reason is that they would overlap the
circles.

results. In those environments, for high-frequency waves there are larger differences between
the velocity amplitudes of the two species (which in these plasmas are p and He iii), except for
the right-handed mode.

3.3.2 Periodic driver

The study of waves excited by a periodic driver is performed by solving Equations (3.13) and
(3.14) as functions of a real frequency, ω. The wavenumber may be complex and can be written
as kx = kR + ikI . When the frequency is positive, kR > 0 corresponds to a wave propagating
along the positive x-axis, while kR < 0 corresponds to a wave propagating to the opposite
direction. When kI 6= 0, it can be found that sgn(kI) = sgn(kR), which means that the
amplitudes of the perturbations are damped in space.

Before solving the dispersion relations, some information can be retrieved by simple inspec-
tion. For instance, Equation (3.14), which does not take collisions into account, can be written
as

k2
x,± =

ω2
±

c2
A

(
1 ∓ ω±

eΩ

)

(
1 ∓ ω±

Ω1

)(
1 ∓ ω±

Ω2

) , (3.26)

and reveals that the mode kx,+ has singular points at ω+ = Ω1 and ω+ = Ω2, while singularities
appear for kx,− at ω− = −Ω1 and ω− = −Ω2. These singularities are known as ion cyclotron
resonances (see, e.g., Cramer [2001], Rahbarnia et al. [2010]). At a resonance, the wavenumber
tends to infinity, which leads to a null phase speed. Hence, the perturbation does not propagate.
The energy of the driver is used in increasing the amplitude of the perturbation of the ion
associated to the cyclotron frequency at which the resonance appears.
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In the same way, Equation (3.13), which takes collisions into account, can be expressed as

k2
x,± =

ω2
±

c2
A

(
1 ∓ ω±

eΩ
∓ iα12

eΩ

ρ1+ρ2

ρ1ρ2

)

(
1 ∓ ω±

Ω1

)(
1 ∓ ω±

Ω2

)
+ iΓ

. (3.27)

If the denominator of the previous formula is equated to zero, it can be checked that there is
no real ω which solves the resulting equation. The denominator can be expanded in the form
of a second degree polynomial on ω and the calculation of its discriminant leads to a complex
number, which means that there are no real solutions for the corresponding equation. Hence,
when collisions are considered, there are no singularities.

Figure 3.3 shows the results of the study of waves excited by a periodic driver in a plasma
with upper chromospheric conditions, using the same physical parameters as in the previous
section. The left panel displays the real part of the normalized wavenumber, kRcA/Ωp, as a
function of the normalized frequency, ω/Ωp, and the right panel displays the corresponding
imaginary part or normalized spatial damping of the waves, kIcA/Ωp. The dispersion relations
yield two solutions for each state of polarization but, for the sake of simplicity, only those with
kR > 0 are shown.

The inspection of Figure 3.3 reveals that there are no remarkable differences between the
cases with νpHe ii = 0 and with νpHe ii 6= 0 for low frequencies. Within this limit, the two
circularly polarized modes share the same wavenumber, which coincides with the ideal MHD
results. If the frequency is increased, the two modes start to diverge from each other and from
the prediction of ideal MHD. This separation occurs when ω/Ωp & 0.1.

If collisions are neglected, the wavenumber of the L mode rises very fast until it reaches a
first resonance at ω/Ωp = 0.25 (or equivalently, ω = ΩHe ii). Then, it enters a cutoff region
where kR = 0 and kI > 0. Thus, this mode becomes evanescent. The cutoff region ends when
ω = Ω̃ and kR increases again until it finds a second resonance at ω = Ωp. From this value
on, the mode becomes evanescent again. On the contrary, the R mode is not subject to any
resonance and its wavenumber keeps increasing with the frequency, but it is always lower than
the result provided by ideal MHD. Note that these remarks correspond to the case of positive
frequencies. If negative values of ω are considered, the described behavior of the L and R modes
is swapped, i.e., resonances appear in the R mode.

By inspecting the solutions that correspond to the collisional cases, it can be checked that
this interaction between the two ions has a very small impact on the R mode. In contrast,
the behavior of the L mode is dramatically altered: the two resonances are removed and kR

remains finite. Moreover, the first cutoff region is also removed: there is some damping on the
perturbations, but they do not turn into evanescent waves. Finally, from ω/Ωp = 1 on, the
normalized wavenumber suffers a strong decrease and the waves are then overdamped instead
of being fully evanescent.

To better illustrate the discussion in the previous paragraph it is useful to compute the
quality factor of the perturbations, which is now given by Q ≡ 1/2|kR/kI |. Figure 3.4 shows
the quality factor of the solutions presented in Figure 3.3 as a function of the normalized
frequency. The shaded areas mark the cutoff regions of the collisionless L mode and the
horizontal dashed line points out the critical value Q = 1/2. It can be seen that the R mode
is always underdamped, since its quality factor is always larger than 1/2, and has a minimum
around ω/Ωp = 0.25, i.e., at the frequency of resonance of singly ionized helium. Waves
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Figure 3.3: Normalized wavenumber (left), kRcA/Ωp, and normalized spatial damping (right),
kIcA/Ωp, as functions of the normalized frequency, ω/Ωp, for waves excited by a periodic driver
in a two-ion plasma with upper chromospheric conditions: np = 1017 m−3, nHeii = 1016 m−3,
B0 = 35 G, Tp = THeii = 104 K, and νpHeii = 8500 Hz. Red solid lines and red dashed lines
correspond to the L and R modes, respectively, when the effect of collisions is included. The
black dot-dashed lines and the black circles represent the collisionless left-hand and right-hand
modes, respectively. The dotted vertical lines show the position of the resonances and the thin
black lines represent the solutions from ideal MHD.

associated with the L mode are clearly underdamped at low frequencies. When ω/Ωp rises, Q
decreases until there is a minimum in the first cutoff region. However, even in that region the
waves are still underdamped, since Q ≈ 1. Then, the quality factor increases again and there
is a maximum before the ω/Ωp = 1, at which the curve crosses the critical value Q = 1/2 and
oscillations become overdamped. Although Q 6= 0 (in contrast to what happens when there are
no collisions), Q decreases at a very fast pace in the second cutoff region and waves may well
be treated as evanescent for very large frequencies.

The removal of resonances and cutoffs due to collisions is a consequence of the dissipation
caused by the friction between the different species. In the case without collisions, waves do
not propagate at the resonant frequencies and the energy provided by the driver is used in
increasing the radius of gyration of the ions. But if there is friction, a fraction of that energy
is transferred to the other species and thus the perturbation is allowed to propagate.

As in the section dedicated to the impulsive driver, the next step of this study is to analyze
the amplitudes and phase shifts of the perturbations. The left panel of Figure 3.5 shows the
absolute value of the ratio of the velocities, |Vp/VHe ii|, for the solutions presented in Figure
3.3. The phase shifts, on the other hand, are shown in the right panel. It can be seen that at
low frequencies the amplitude ratios are close to unity and that there is no phase shift. This
means that the magnetic field produces a strong coupling between the two species. But as the
frequency increases, the motions of the two fluids become more independent from each other,
particularly at the resonances of the L mode. The inclusion of friction causes the fluids to be
more coupled. This can be clearly seen at the frequencies of resonance, where the amplitude
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Figure 3.4: Quality factor, Q, as a function of the normalized frequency, ω/Ωp, computed from
the solutions displayed on Figure 3.3. The shaded areas show the cut-off regions of the left-
hand polarized mode from Equation (3.27). The red solid and red dashed curves represent
the left-hand and right-hand modes of Equation (3.26), respectively. The dotted vertical lines
mark the position of the cyclotron frequencies, with ΩHeii < Ωp. The dashed horizontal line
corresponds to Q = 1/2.

Figure 3.5: Ratio of amplitudes (left) and phase shift (right) of the velocities of protons and
singly ionized helium computed from the results shown on the right panels of Figure 3.3 (chro-
mospheric conditions).
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ratios reach extreme values when collisions are neglected.
The paragraphs above have been devoted to the analysis of a plasma with upper chromo-

spheric conditions but nothing has been said about the other two environments studied in the
previous section. The behavior of waves in the solar corona and the solar wind at 1 AU can
be anticipated from the collisionless solutions displayed in Figures 3.3 and 3.5, but keeping in
mind that now the second ionized species is He iii instead of He ii. This change implies that
the positions of the lower resonance and the lower bound of the first cutoff region are modified
accordingly.

3.4 Analysis of the dispersion relation for three-ion plas-

mas

The addition of a third ion to the plasma increases the complexity of the problem to be analyzed,
which is reflected in a much longer and more complicated formula for the dispersion relation
due to the presence of a great number of additional terms associated to collisions. Hence, it will
not be shown here. Nonetheless, the abridged version in which the elastic collisions between
the different ions are neglected can be used to analyze some of the general properties. This
simpler collisionless version is given by

ω2
±

[
Z1n1 (ω± ∓ Ω2) (ω± ∓ Ω3) + Z2n2 (ω± ∓ Ω1) (ω± ∓ Ω3) + Z3n3 (ω± ∓ Ω1) (ω± ∓ Ω2)

]

±Bxk2
x

eµ0
(ω± ∓ Ω1) (ω± ∓ Ω2) (ω± ∓ Ω3) = 0. (3.28)

The dispersion relations for waves in a three-ion plasma are fourth-degree polynomials in
ω. Thus, for the case of waves generated by an impulsive driver, an additional oscillation mode
appears for each polarization with respect to the system with only two ions. By exploring
analytically the limit of small wavenumbers, as in Section 3.3.1, it can be checked that the
new mode is related to the cyclotron frequencies. Each polarization still has only two Alfvénic
modes, with ω ≈ ±ωA, where the Alfvén speed is computed using the sum of the densities of
the three ions. The frequencies of the remaining modes are ω± = ±Ω̃1 and ω± = ±Ω̃2, where
Ω̃1 and Ω̃2 are the solutions to

Z1n1 (ω − Ω2) (ω − Ω3) + Z2n2 (ω − Ω1) (ω − Ω3) + Z3n3 (ω − Ω1) (ω − Ω2) = 0, (3.29)

and are given by

Ω̃1 =
Z1n1 (Ω2 + Ω3) + Z2n2 (Ω1 + Ω3) + Z3n3 (Ω1 + Ω2)

2ne

− 1

2ne

[(
Z1n1 (Ω2 + Ω3) + Z2n2 (Ω1 + Ω3) + Z3n3 (Ω1 + Ω2)

)2

−4ne (Z1n1Ω2Ω3 + Z2n2Ω1Ω3 + Z3n3Ω1Ω2)
]1/2

(3.30)

and

Ω̃2 =
Z1n1 (Ω2 + Ω3) + Z2n2 (Ω1 + Ω3) + Z3n3 (Ω1 + Ω2)

2ne

+
1

2ne

[(
Z1n1 (Ω2 + Ω3) + Z2n2 (Ω1 + Ω3) + Z3n3 (Ω1 + Ω2)

)2

−4ne (Z1n1Ω2Ω3 + Z2n2Ω1Ω3 + Z3n3Ω1Ω2)
]1/2

. (3.31)
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In contrast, no additional solution appears in the case of a periodic driver, although a third
resonance is present when ω± = ±Ω3.

As already mentioned in the previous section, the abundances of protons and doubly ionized
helium in the solar corona and the solar wind are much larger than the abundances of other ions.
Hence, the addition of a third ion would hardly modify the results from the two-ion model when
applied to those two environments. However, the presence of a third ion can have a significant
effect in upper chromosphere. The model F of Fontenla et al. [1993] predicts that at a height
of ∼ 2016 km over the top of the photosphere the number densities are np ≈ 7 × 1016 m−3,
nHe ii ≈ 6 × 1015 m−3, and nHe iii ≈ 1015 m−3. Therefore, at that height the contribution
of the three ions should be considered, although protons are still the dominant species. The
temperature at that height is T ≈ 2 × 104 K and the magnetic field is Bx ≈ 35 G. This
set of parameters leads to the following collision and cyclotron frequencies: νpHeii ≈ 2000 Hz,
νHeiip ≈ 5840 Hz, νpHeiii ≈ 1260 Hz, νHeiiip ≈ 22100 Hz, νHeiiHeiii ≈ 540 Hz, νHeiiiHeii ≈ 3250 Hz,
Ωp = 335268 rad s−1, ΩHeii = 83817.1 rad s−1, and ΩHeiii = 167634 rad s−1. The Alfvén speed
is cA ≈ 244 km s−1.

The results of the study of waves generated by an impulsive driver are shown in Figure 3.6.
Once more the solutions to the collisionless dispersion relation are not plotted because there are
no appreciable differences in the real part of the frequency (left panel) with the case in which
collisions are included and because the imaginary part is equal to zero if friction is neglected.
Again, only the solutions with ωR > 0 are displayed.

Figure 3.6: Solutions to the dispersion relations of a three-ion plasma with np = 7× 1016 m−3,
nHeii = 6 × 1015 m−3, nHeiii = 1015 m−3, Bx = 35 G, νpHeii ≈ 2000 Hz, νHeiip ≈ 5840 Hz,
νpHeiii ≈ 1260 Hz, νHeiiip ≈ 22100 Hz, νHeiiHeiii ≈ 540 Hz, and νHeiiiHeii ≈ 3250 Hz. Left:
normalized real part of the frequency as a function of the normalized wavenumber. Right:
absolute value of the normalized damping as a function of kxcA/Ωp. Red dashed lines represent
the L modes and the red solid line represents the R mode. The black thin line corresponds to
the solution of ideal MHD.

In the limit of small wavenumbers, it can be seen that two of the solutions of the multi-fluid
model coincide with the Alfvén frequency provided by the single-fluid description, while the
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Figure 3.7: Solutions of the dispersion relations for waves generated by a periodic driver in a
three-ion plasma with the same parameters as those used in Figure 3.6.

other two are given by the values Ω̃1 and Ω̃2. When kxcA/Ωp increases, the Alfvénic L mode
(represented by the dashed line) turns into an ion cyclotron mode and its frequency tends to the
lower cyclotron frequency. This is the same behavior as that found in the two-ion description).
The remaining L modes tend to the limiting values ΩHe iii and Ωp, and they conserve their

order: the mode associated with Ω̃2 (which is larger than Ω̃1) tends to the upper cyclotron
frequency. Finally, the Alfvénic R mode becomes the whistler wave and its frequency is always
higher than the Alfvén frequency.

The right panel of Figure 3.6 shows that the R mode is again the less affected by collisions
and its normalized damping is |ωI |/Ωp < 10−5 for very small and very large wavenumbers, with
a maximum of |ωI |/Ωp ≈ 10−3 around kxcA/Ωp = 1. For small wavenumbers, the solutions

with stronger damping are those related to Ω̃1 and Ω̃2: the damping of the former (represented
by the dotted-dashed line) decreases with the wavenumber until it reaches a minimum around
kxcA/Ωp = 0.5, then increases again and becomes constant for very large wavenumbers, with

|ωI |/Ωp ≈ 0.75. The damping of the mode associated with Ω̃2 decreases very fast in the region
around kxcA/Ωp = 1 and then stabilizes in |ωI |/Ωp ≈ 0.025. Finally, the damping of the
Alfvénic L mode increases with the wavenumber until it reaches the value |ωI |/Ωp ≈ 0.06 when
kxcA/Ωp ≫ 1.

The analysis of waves generated by a periodic driver is illustrated by Figure 3.7. As be-
fore, only the solutions with kR > 0 are plotted. It can be noted that the collisionless L
mode, represented by the black dotted-dashed line, exhibits the expected three resonances: the
wavenumber tends to infinity at the three cyclotron frequencies. There are also three cutoff re-
gions, instead of the two cut-offs that exist in the two-ion case. The wavenumber is equal to zero

in the following intervals: ω ∈
(
ΩHeii, Ω̃1

)
, ω ∈

(
ΩHeiii, Ω̃2

)
or ω > Ωp, where Ω̃1 ≈ 0.3Ωp and

Ω̃2 ≈ 0.52Ωp. The solutions corresponding to the case with νst 6= 0 show that the singularities
are substituted by extrema of the normalized wavenumber, where the highest peak corresponds
to the most abundant species, i.e., protons. Again, the momentum transfer removes the cutoff
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regions. Regarding the R mode, the same behavior explained for the case of two-ion plasmas is
found here: there are no resonances, the normalized wavenumber increases with the frequency
and the spatial damping is inefficient in the whole frequency range.

Therefore, the overall results obtained in the three-ion model appear as natural extensions
to the results of the two-ion case. Hence, the generalization to plasmas with a larger number
of ions seems straightforward.

3.5 Numerical simulations

After the analysis of the properties of the dispersion relations in two-ion and three-ion plasmas,
it is interesting to compute the full time-dependent evolution of the perturbations by means of
numerical simulations.

The results presented in this section are obtained by using the numerical code MolMHD
(Bona et al. [2009]), which is based on the method of lines (Sarmin and Chudov [1963], Schiesser
[1991]), to compute the temporal evolution of the system of equations detailed in Section 2.2. As
explained by Hamdi et al. [2007], the method of lines transforms a system of partial differential
equations (PDEs) into a system of ordinary differential equations (ODEs) by replacing the
spatial derivatives with algebraic approximations. For instance, to solve a PDE of the form

∂u(x, t)

∂t
+ h(x, t)

∂f(x, t)

∂x
= 0, (3.32)

the derivative with respect to x can be substituted by the following finite differences approxi-
mation:

∂f(x, t)

∂x
≈ fi − fi−1

∆x
, (3.33)

where the subscript i represents the position of a point in the grid that covers the domain in x
and ∆x is the separation between two adjacent points of the grid. Thus, an approximation to
Equation (3.32) is given by the following system of ODEs:

∂ui(x, t)

∂t
≈ −hi(x, t)

fi − fi−1

∆x
, 1 ≤ i ≤ N, (3.34)

where N is the number of points of the grid.
The numerical integration of the previous system can be performed by substituting the

temporal derivative with another finite differences approximation, which leads to

un+1
i − un

i

∆t
≈ −hi(x, t)

fi − fi−1

∆x
, 1 ≤ i ≤ N, (3.35)

where the superscript n denotes timesteps which are separated by a time given by ∆t. Hence,
the solution of the system at the timestep n + 1 is given by

un+1
i ≈ un

i − hi
∆t

∆x
(fi − fi−1), 1 ≤ i ≤ N. (3.36)

The generalization of this procedure to a larger number of spatial dimensions is straightforward.
The MolMHD version used for this investigation computes spatial derivatives by means

of a 4th order of accuracy central finite differences scheme (except for the points closer to the

69



3.5. NUMERICAL SIMULATIONS

boundaries, where second order forward and backward schemes are used for the lower and upper
boundaries, respectively). Thus, for instance, the derivative with respect to the coordinate x
for the interior points is given by

∂fi

∂x
≈ fi−2 − 8fi−1 + 8fi+1 − fi+2

12∆x
, 4 < i < N − 4. (3.37)

The temporal variable is advanced through an explicit 3rd degree TVD Runge-Kutta method,
where TVD refers to total variation diminishing (Harten [1983]). The CFL condition (Courant
et al. [1928]) imposes a strong constraint to the maximum time step which can be used in the
simulations. This is mainly due to the presence of the ion cyclotron frequencies, but also to
the diffusion scales related to collisions. The use of this explicit scheme in 2D and 3D is not
practical due to the small time-steps required but for the purposes of this Thesis, which focuses
on 1D scenarios, it is acceptable.

With the aim of comparing the outcome of the numerical simulations with the results
provided by the dispersion relations examined in the previous sections, 1D simulations with an
initially uniform and static background, i.e., ρs(x) = ρs,0 and Vs,0 = 0, are performed. The
background magnetic field is given by B0(x) = (Bx, 0, 0)T .

It must be noted that the equations used in the numerical code are nonlinear. However,
the goal of this chapter is the analysis of the linear regime of small-amplitude perturbations,
although nonlinear effects are consistently computed in the simulations. The study of nonlin-
earities will be carried out in Chapter 5.

3.5.1 Impulsive driver

To simulate waves excited by an impulsive driver, an initial perturbation is superimposed to
the background and then is left to evolve. In this study, a uniform grid of N = 401 points is
used to cover the domain x ∈ [−l, l], where l is a length scale and the initial perturbation is
chosen to be the fundamental standing wave in the closed domain. As boundary conditions, the
velocity perturbations are set equal to zero at x = ±l. The initial condition for the velocities
can be written as

Vs(x, t = 0) =




0
As,y cos (kxx)
As,z cos (kxx)


 , (3.38)

where the wavenumber is kx = π/(2l), while there are no initial perturbation of the remaining
variables (magnetic field, densities and pressures). In addition, to simplify the analysis, the
amplitude As,z is set to zero, so that the initial perturbation has only a y-component in velocity.
Due to the symmetry of the system, the results would be equivalent if the amplitudes are
chosen as As,y = 0 and As,z 6= 0, instead. The linear regime can be analyzed by imposing that
As,y ≪ cA.

Two-ion plasmas

As in the section devoted to the examination of the dispersion relations, it is useful to start
with the investigation of the most simple case, i.e., that of two-ion plasmas. The analysis of
the dispersion relations has shown that the effect of collisions between the two fluids is much
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more relevant in the upper chromosphere than in the solar corona or the solar wind. Thus,
here only the former environment will be considered.

Figure 3.8 displays the results of a simulation in which the initial perturbations are

Vp,y(x, t = 0) = VHeii,y(x, t = 0) = 10−3cA cos (kxx) , (3.39)

and kx = π/105 m−1. The top panel displays the y-component of the velocity of protons (solid
red line) and singly ionized helium (black diamonds). The bottom panel shows the respective
z-components. As the simulation stays in the linear regime, the values of the amplitudes of the
perturbations are not important, and only the ratios between those magnitudes are relevant.
Therefore, the results are normalized with respect to the initial amplitude of the y-component
of the velocity of protons, Vy,0 ≡ Vp,y(t = 0).

The y-components of the velocities of the two ions are strongly coupled, as it can be seen in
the top panel: both species oscillate with the same frequency, amplitude and phase. In contrast,
the z-components show some differences in the first steps of the simulations. During those first
steps, there is a phase shift in the oscillation of He ii with respect to that of protons, but as time
increases the phase shift is reduced. In addition, the amplitude of the z-component is initially
much smaller than that of the y-component. This is due to the fact that the investigated wave is
a combination of various modes of oscillation. From any of the two panels it can be checked that
both ions oscillate with a frequency ω ≈ 6.41 rad s−1, which coincides with the low-frequency
solutions obtained from Equation (3.13). The solutions from the multi-fluid dispersion relation
that are associated with the cyclotron frequencies are not found in this simulation. This absence
may be due to an insufficient temporal resolution or it may be caused by the specific choice of
the initial conditions.

The waves that appear in the simulations may be a combination of several of the modes
predicted by the dispersion relation. Since those modes have been computed by assuming that
the perturbations are proportional to exp(−iωt), each component of the velocity perturbations
can be written as

Vs,α(x, t) = Vs,α0(x) exp(−iωt) = Vs,α0 [cos(ωt) + i sin(ωt)] , (3.40)

with α = {x, y, z}. Thus, taking into account the definition of the polarized variables given by
Equation (3.8), the L and R modes for velocity can be expressed as

Vs,±(x, t) =




0
Vs,y(x, t)

±iVs,z(x, t)


 =




0
Vs,y0(x) [cos (ω±t) + i sin(ω±t)]

Vs,y0(x) [±i cos(ω±t) ∓ sin (ω±t)]


 , (3.41)

since Vs,y0(x) = Vs,z0(x) for the case of circular polarization. It must be noted that only the
real part of the previous expression has a physical meaning. Hence,

Vs,±(x, t) =




0
Vs,y0(x) cos (ω±t)
∓Vs,y0(x) sin (ω±t)


 =




0
As,y cos(kxx) cos (ω±t)
∓As,y cos(kxx) sin (ω±t)


 , (3.42)

where the relation Vs,y0(x) = As,y cos(kxx) has been taken from the initial condition given by
Equation (3.38).
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Figure 3.8: Simulation of an Alfvén wave in a two-ion plasma with chromospheric conditions:
np = 1017 m−3, nHeii = 0.1np, Bx = 35 G, and νpHeii = 8500 Hz. The initial perturbation is
given by Equation (3.39) and the wavenumber is kx = π/105 m−1. The top panel shows the
normalized y-component of the velocity of ions, Vy/Vy,0, at the position x = 0; the z-component,
Vz/Vy,0, is shown in the bottom panel. The red lines represent the velocity of protons, the black
diamonds represent the velocity of Heii and the blue crosses correspond to the analytic fits given
by Equation (3.45).

From Equation (3.13) six modes are obtained: three of them are left-hand polarized and the
other three are right-hand polarized. But, as already mentioned, in the simulation illustrated
in Figure 3.8, two of them cannot be found. Hence, the oscillation at x = 0 may be expressed
as the following combination of the remaining four modes:

Vs(0, t) =




0
As,y

[
cos (ω+,1t) + cos (ω+,2t) + cos (ω−,1t) + cos (ω−,2t)

]

As,y

[
− sin (ω+,1t) − sin (ω+,2t) + sin (ω−,1t) + sin (ω−,2t)

]


 (3.43)
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where ω±,1 and ω±,2 are the roots of the dispersion relation. Those modes have also an imaginary
part but it has been shown in Section 3.3.1 that the imaginary part is negligible. It must be
noted that in the most general case each oscillation mode has a different amplitude. However,
here, they have been chosen to have the same amplitude, which is consistent with the results
presented in Section 3.3.1. Furthermore, for this particular case, the dispersion relation shows
that ω−,1 = −ω+,1 and ω−,2 = −ω+,2. Hence, Equation (3.43) can be rewritten as

Vs(0, t) =




0
2As,y

[
cos (ω+,1t) + cos (ω+,2t)

]

−2As,y [sin (ω+,1t) + sin (ω+,2t)]


 , (3.44)

or, equivalently,

Vs(0, t) =




0

4As,y cos
(ω+,1+ω+,2

2
t
)
cos
(ω+,1−ω+,2

2
t
)

−4As,y sin
(ω+,1+ω+,2

2
t
)
cos
(ω+,1−ω+,2

2
t
)


 , (3.45)

which represents the composition of a carrier wave with frequency θC = (ω+,1 − ω+,2) /2 and an
envelope wave with frequency θE = (ω+,1 + ω+,2) /2 (it must be noted that ω+,1 and ω+,2 have
opposite signs). Setting As,y = 1/4, the previous formula fits very well the velocity of ions, as
shown by the blue crosses in Figure 3.8, with the exception of the very first instants.

The next step in the present investigation is to perform a simulation with the same param-
eters as in the previous one but with different initial conditions and to check how the temporal
evolution of the perturbations is affected. Now, the singly ionized helium fluid is set to be
initially at rest, i.e., VHe ii(x, t = 0) = 0, while the initial perturbation for the proton fluid is
again Vp,y(x, t = 0) = 10−3cA cos(kxx). Figure 3.9 illustrates the results of this simulation and
reveals some differences in the oscillation with respect to those plotted in Figure 3.8.

In the first place, it can be seen in the top panel that there is an extremely short relaxation
time during which the y-components of velocities of the two ions tend to become equal. After
this relaxation time, the two fluids oscillate in phase and with the same amplitude as if they
were a single fluid. By performing several simulations with different physical parameters and
initial conditions, an empirical expression can be deduced for the amplitude of the oscillation
after the relation time, namely

V (x) =

∑
s ρsVs (x, t = 0)∑

s ρs
. (3.46)

However, the most important difference is revealed by the insets in the figure, which focus
on the initial time steps of the simulation. A new oscillation mode, which has a high frequency
and is damped, is found in those insets. By fitting it with an exponentially decaying sinusoidal
function, it can be checked that its frequency is ωR ≈ 106672.7 rad s−1 and that its damping
rate is ωI ≈ 29756 s−1. Those values agree with the solution from the dispersion relation
that could not be found in the preceding simulation. Moreover, the two species oscillate in
anti-phase, which is the behavior predicted for that root of the dispersion relation. Hence, this
additional mode, which is associated with the cyclotron frequencies, is only present in the initial
stages of the simulations when the initial velocity amplitudes of the two ions are different.

After focusing on the limit of very small values of the wavenumber (i.e., large wavelengths),
it is interesting to turn to the high wavenumber range, where all the normal modes predicted by

73



3.5. NUMERICAL SIMULATIONS

Figure 3.9: Simulation with the same physical parameters as Figure 3.8 (chromospheric condi-
tions) but with a smaller timestep and a different initial perturbation so that the He ii fluid is
initially at rest. The red solid lines represent the velocity of protons and the black dashed lines
represent the velocity of singly ionized helium. The top panel corresponds to the normalized
y-component of the velocity and the bottom one to the normalized z-component.

the dispersion relation have high frequencies. This range can be studied, for instance, by setting
the wavenumber as kx = π/5 m−1 (which corresponds to a normalized value of kxcA/Ωp ≈ 0.38).

Figure 3.10 shows the results of a simulation for this high wavenumber range, in which the
same initial conditions as for Figure 3.9 have been used. Two different situations are analyzed
here. The left panels correspond to the case where the effect of collisions is ignored, while the
right panels represent the case when the collisional interaction between the two ionized species
has been taken into account.

The top panels of Figure 3.10 show the y-component of the velocity of each species, the
red solid line corresponding to the proton fluid while the singly ionized fluid is represented by
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Figure 3.10: Normalized y-component of the velocities of ions (top panels) and spectra of the
oscillations (bottom panels) from two different simulations of a two-ion plasma with upper
chromospheric conditions. The left and right panels represent the cases without and with
collisions, respectively. The wavenumber is kx = π/5 m−1. The vertical lines on the bottom
panels show the solutions of the dispersion relation: the dotted lines correspond to the L modes
and the solid lines correspond to the R modes.

the black dashed line. The z-components are not plotted here because they do not provide
additional relevant information and it is enough to look at the y-components to explain the
important physics of the problem.

In comparison with the case of small wavenumbers, the motions plotted in Figure 3.10 are
much more complex. Thus, the oscillations cannot be so easily related to the modes predicted
by the dispersion relation. However, it is possible to compute their power spectrum and check
if the frequencies predicted by the dispersion relation are present. The corresponding power
spectra are shown in the bottom panels, and they are normalized with respect to the maximum
power of the oscillations of protons. In a power spectrum, the position of the peaks informs
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about the frequencies of the modes that compose the analyzed oscillation and their heights
show their relative contribution. In addition, here some vertical lines have been added to mark
the position of the roots of the dispersion relations. In the left-bottom panel, three main peaks
can be found. They are in very good agreement with the solutions given by the dispersion
relation. However, the heights of the peaks vary in a remarkable way from the power spectrum
of one fluid to the other. This means that each mode has a clearly different contribution to the
motions of each fluid. The motions of both fluids are dominated by the mode associated to the
central peak, which corresponds to the upper L mode. However, the influence of the remaining
modes has some evident dissimilarities. For instance, the contribution of the lower L mode
(which tends to ΩHe ii at very large wavenumbers) is negligible in the motion of protons, while
it cannot be overlooked for the case of singly ionized helium. On the contrary, the contribution
of the R mode is greater for protons than for helium.

The right panels of Figure 3.10 bring into view the striking effect that collisions have on the
high-frequency waves. During the first steps of the simulation, the three oscillation modes are
present. However, the two L modes are strongly damped and they disappear in a very short
time, while the R mode survives for a longer time. This circumstance is reflected in the power
spectrum by the very small peaks associated to the L modes, whose heights are much lower
than the peak corresponding to the R mode.

Three-ion plasmas

Here, an additional third ion, namely doubly ionized helium, is considered in the study of a
region with upper chromospheric conditions. Thus, the parameters for the simulations are the
following: np = 7 × 1016 m−3, nHe ii = 6 × 1015 m−3, nHe iii = 1015 m−3, T = 2 × 104 K, and
Bx = 35 G.

Figure 3.11 displays the result of two simulations where the initial perturbation for the
proton fluid is given by

Vp,y(x, t = 0) = 10−3cA cos (kxx) , (3.47)

while the two helium fluids are initially at rest. The chosen wavenumber for the initial per-
turbation is kx = π/5 m−1, which corresponds to a normalized value of kxcA/Ωp ≈ 0.46, i.e.,
it is in the large range of wavenumbers. As in the section devoted to two-ion plasmas, here
a comparison between the cases with and without collisions is performed. The left panels of
Figure 3.11 represent the former, while the right panels correspond to the latter. Again, the
y-components of the velocity and the power spectra are plotted in the top and the bottom
panels, respectively.

From the dispersion relations analyzed in Section 3.4 four different solutions can be obtained,
three of them corresponding to left-hand polarized waves and only one to the right-hand polar-
ization. In the left-bottom panel of Figure 3.11, it can be seen that the power spectra exhibits
the expected four peaks. Again, there are important differences in the contribution of each
mode to the oscillation of each ionized fluid. The modes with frequencies close to the cyclotron
frequency of one of the ionized species mainly affect the motion of that species, while their
impact on the other fluids is much smaller. This statement can be checked by looking, for
instance, at the leftmost peak: its position is close to ΩHe ii and its height is around 0.7 for the
He ii fluid but is almost zero for the other ions. Thus, that oscillation mode seems to affect
only the singly ionized helium while its influence on the other ions is negligible.
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Figure 3.11: Results of a simulation of a three-ion plasma with upper chromospheric conditions.
The top panels show the y-component of the velocity of ions and the bottom panels show the
power spectra of the oscillations. On the left panels, the effect of collisions is ignored. On the
right panels collisions are taken into account. The wavenumber is kx = π/5 m−1. The red solid,
blue dot-dashed and black dashed lines correspond to p, He ii and He iii, respectively.

On the right panels of Figure 3.11, a similar behavior than that already explained for two-
ion plasmas is found: collisions between the three ionized species cause the L modes to be more
attenuated than the R mode.

After exploring the large wavenumber range, it is the turn to focus on the opposite limit.
According to the dispersion relations, at small wavenumbers there are two Alfvénic modes
with ω ≈ ωA and two modes related to the cyclotron frequencies. Hence, the results of the
simulations for three-ion plasmas are qualitatively similar to those for two-ion plasmas shown
in Figures 3.8 and 3.9. Apart from the new value of the Alfvén speed and the corresponding
Alfvén frequency, the relevant difference can be found during the relaxation time. For the
case of three-ion plasmas, two oscillation modes are present during that short time and their
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frequencies are given by Equations (3.30) and (3.31). After the relaxation time, the magnetic
field produces a strong coupling on the three fluids so that they behave as a single fluid. Then,
their motion is well described by the same formulas used for the two-ion case, i.e., Equation
(3.43) (or its equivalent expressions) and Equation (3.46).

3.5.2 Periodic driver

The effect of a periodic driver can be simulated by applying to a given point of the domain a
perturbation that is a periodic function of time. For convenience, in the simulations studied
in this section, the driver will act on the point x = 0 and the spatial domain of the simulation
will be x ∈ [0, l].

In general, during the first steps of the simulations, some transient effects appear before an
oscillation that can be related to a normal mode starts to form. Those transients are not of
interest for this investigation and, therefore, will be ignored.

Two-ion plasmas

Figure 3.12 shows the results of a simulation with the parameters for the upper chromospheric
region considering that the plasma is composed of only two species. The driver is given by

Vp,y(x = 0, t) = VHeii,y(x = 0, t) = 10−3cA cos (ωt) , (3.48)

with a frequency ω = 10−3Ωp. The length of the spatial domain is l = 2.5 × 104 m and
an uniform grid of N = 401 points has been used to cover that domain. Each frame of the
figure corresponds to a different time of the simulation. It can be checked that the perturbation
propagates at a phase speed of ∼ 200 km s−1, which is in good agreement with the Alfvén speed
of this plasma. The two fluids (protons and singly ionized helium) oscillate with the same phase
and amplitude, in anti-phase with respect to the magnetic field, which is the expected behavior
for Alfvén waves.

To compare the simulation with the predictions of the dispersion relation, the oscillation can
be fitted with a function f(x) ∼ cos(kxx). In that case, the following value of the wavenumber
is obtained: kx ≈ 0.001643 m−1. Equation (3.27) yields two solutions with kR,+ ≈ 0.001644 m−1

and kR,− ≈ 0.001642 m−1. Hence, the two approaches used in this investigation show a good
agreement.

It must be noted that, as in the case of the impulsive driver, the resulting wave is a combi-
nation of the left-hand and the right-hand polarized modes. Thus, a composition of a carrier
wave and an envelope wave should appear. Here, the wavenumber of the carrier wave would be
κC = (kR,+ +kR,−)/2 and the wavenumber of the envelope wave would be κE = (kR,+−kR,−)/2.
The frequency chosen for the driver in this simulation leads to κE ≈ 1.49 × 10−6 m−1, which
is equivalent to a wavelength λE ≈ 4.2 × 106 m. Such value is much larger than the length of
the domain. That is the reason why the existence of the envelope wave cannot be discerned in
this simulation.

Since for low frequencies, the single-fluid and the multi-fluid models provide the same re-
sults, the most interesting range of frequencies for this research is that where the single-fluid
approach is not applicable, i.e., the range of high frequencies. As shown in Section 3.3.2, as
the frequency of the driver approaches the cyclotron frequencies of the ions, the properties of
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Figure 3.12: Wave generated by a periodic driver in a two-ion plasma with chromospheric
conditions. The frequency of the driver is ω = 10−3Ωp. The y-component of the velocity of
the ions is shown as a function of the coordinate x. The red line represents the velocity of
protons and the black symbols the velocity of the He ii fluid. The green dotted lines show the
normalized magnetic field perturbation, B1,ycA/(Vy,0Bx).

the two different modes exhibit great dissimilarities. So, it seems convenient to analyze them
separately. However, the driver employed in the previous simulation causes the excitation of
both modes. Nevertheless, it is possible to find other kinds of drivers that lead to the exci-
tation of one of the two modes exclusively. For instance, to study the left-hand mode (+) or
only the right-hand mode (-), the following configuration for the velocity and magnetic field
perturbations may be used:

Vs,±(x = 0, t) =




0
V0 cos (ωt)
∓V0 sin (ωt)


 (3.49)

and

B1,±(x = 0, t) =




0
B1,0 cos (ωt)
∓B1,0 sin (ωt)


 , (3.50)

where the amplitudes of the perturbations are linked by B1,0 = −BxV0/cA.
The left panels of Figure 3.13 show the results of a simulation of the L mode at frequency

of resonance ω = ΩHe ii. It must be reminded that, in the collisionless case, perturbations
cannot propagate at the resonance frequencies since the phase speed tends to zero. However,
the effect of collisions has been included in the simulation and the graphic shows that there is
propagation of the perturbation, although it is strongly damped. A total of N = 2001 points
have been used to cover a domain with l = 500 m, even though only the interval x ∈ [0, 50] is
represented in the figure. The motivation for using a bigger domain than the one shown is to
avoid the interference of unwanted numerical effects caused by the rightmost boundary.

As already mentioned, the perturbation presents a very strong attenuation in space: it does
not propagate beyond a distance x ≈ 30 m from the point where the driver has been applied.
The dotted curves represent the exponential decay given by the dispersion relation and it can
be seen that they fit well the damping of the oscillation. In addition, using those curves as a
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Figure 3.13: Left (right): velocities of ions at a time t = 10−3 s in a simulation in which the
L mode (R mode) is excited by a driver with frequency ω = ΩHeii. The y-components and
z-component are shown in the top and the bottom panels, respectively. The red solid lines cor-
respond to the protons and the black dashed lines correspond to the singly ionized helium. The
dotted curves outline the spatial exponential decay computed through the dispersion relation,
Equation (3.27). (Animations of the left and right panels of this figure are available.)

reference, the velocity amplitude ratio can be computed. The result is |Vp/VHe ii| ≈ 0.35, which
is in good agreement with the results displayed in Figure 3.5. The analysis of the dispersion
relation also predicts that there is a phase shift between the velocities of the two fluids. Once
again, that feature is observed in the simulation.

The right panels of Figure 3.13 show the results of a simulation with the same parameters of
that in the left panels but for a driver that excites the right-hand mode. There are remarkable
differences with respect to the previous simulation. In the first place, the phase speed of the R
mode is higher. Then, the damping is much lower. Thus, the perturbation propagates much
faster and to farther distances than in the previous case. Another fact that contrasts with
the ion cyclotron mode is that here the protons oscillate with a larger amplitude than the
singly ionized helium. It can be checked that the amplitude ratio is |Vp/VHe ii| ≈ 1.6, which is
consistent with the analysis from the dispersion relation. One final difference is that the two
fluids oscillate in phase.

At the upper resonance, which corresponds to the proton cyclotron frequency, the behavior
of the two modes is analogous to what has been explained in the preceding paragraphs for the
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lower resonance. The differences reside in that the damping lengths are shorter and that the
amplitude ratio of the L mode is greater than unity, i.e., the amplitude of the oscillation of
protons is larger than that of singly ionized helium.

Three-ion plasmas

As it has been shown in Section 3.4, the addition of more ionized species to the system does not
cause the appearance of further oscillation modes when a periodic driver is considered. Thus,
the motions of all the species in the plasma are still governed by the combination of only one
left-hand mode and one right-hand mode. This fact contrasts with the case of the impulsive
driver, where two extra modes (one for each polarization) appear for each new ion taken into
account. However, there are still some dissimilarities with the two-ion case: an additional
resonance frequency arise for each supplementary ionized species. This brief section focuses on
the properties of the L waves at that resonance frequency.

Figure 3.14: Velocities of ions at the time t = 10−3 s of a simulation of the L-mode at the
frequency of resonance ω = ΩHeiii in a three-ion plasma with chromospheric conditions. The
red solid lines represent the y-component of the normalized velocity of the protons; the black
dashed lines correspond to the velocity of singly ionized helium and the blue dotted-dashed
lines correspond to the velocity of the doubly ionized helium. The dotted curves outline the
spatial damping computed through Equation (3.12).
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Figure 3.14 shows a simulation of a left-hand polarized wave in a three-ion plasma with
chromospheric conditions, i.e., the presence of doubly ionized helium is considered. The fre-
quency of the driver is ω = ΩHe iii. A total of N = 2001 points have been used to cover the
domain x ∈ [0, 500] although, again, the figure only shows a fraction of that domain. On the
one hand, as in the two-ion case, it can be seen that the perturbation is strongly damped and
cannot propagate far from where it has been originated. On the other hand, here, the ion that
oscillates with a larger amplitude is the doubly ionized helium, as it would be expected, since
the driver is exciting waves with the cyclotron frequency of that species.

3.6 Discussion

In this chapter, the multi-fluid model detailed in Chapter 2 has been applied to the investigation
of transverse waves in fully ionized plasmas, focusing on the effects due to Coulomb collisions
between the different ionized species. The linear regime of small-amplitude perturbations has
been considered, which has allowed to derive the dispersion relations for several particular cases
and analyze their normal modes. Then, by means of numerical simulations, the full temporal
evolution of those perturbations has been computed and it has been checked that the results
of the simulations are consistent with the predictions of the dispersion relations.

Both the cases of waves generated by an impulsive driver and by a periodic driver have
been studied, and a comparison with the predictions provided by the single-fluid model of
ideal MHD has been performed. The first difference that has been found between the two
models is that ideal MHD predicts the existence of only two oscillation modes independently
of the kind of driver chosen, and it is not necessary to study the two cases separately, as
they are equivalent. For the case of the periodic driver, the multi-fluid model gives also two
solutions, regardless how many species compose the plasma. In contrast, when an impulsive
driver is investigated, the number of normal modes increases with each additional ionized species
considered. Furthermore, the waves described by ideal MHD are linearly polarized, while the
waves from the multi-fluid description are circularly polarized.

It has been checked that if the various ionized species are exposed to perturbations with
frequencies much lower than the cyclotron frequencies, they react as if they were a single fluid
and the properties of the corresponding waves are well described by ideal MHD: they oscillate
with the Alfvén frequency, in phase and with the same velocity amplitude, which is given by
Equation (3.46). The reason for that behavior is that the magnetic field produces a strong
coupling between those species. However, at higher frequencies, the interaction through the
magnetic field is not enough to keep all the fluids as tightly coupled as before and the amplitude
and the phase of the oscillations are different for each mode. At this regime, ideal MHD does
not provide accurate results and the use of the multi-fluid approach is required. In addition,
the effect of elastic collisions should not be neglected, since the frictional force associated to the
velocity drifts may lead to an intense damping of the waves. This investigation has shown that
the damping is stronger for the modes with the left-hand polarization than for the right-hand
modes.

The multi-fluid model has been used to study the propagation of waves in three different
solar plasmas: the lower solar corona, the solar wind at 1 AU, and the upper chromosphere. It
has been found that for the solar corona the friction coefficient between the ions is small and
the effect of collisions is relevant only for times longer than several periods of the Alfvén wave.
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The friction coefficient in the solar wind has an even smaller value and hence, this environment
can be treated as a collisionless fluid from the perspective of this work, since the damping
times of the oscillations are in the order of 106 s or larger. Nevertheless, the multi-fluid model
is generally still required to illustrate the properties of waves in those plasmas, in view of the
fact that only perturbations with wavelengths larger than the critical value given by Equation
(3.25) are described with a reasonable accuracy by ideal MHD. The critical wavelengths are
∼ 103 km for the solar wind and ∼ 750 m for the solar corona. In contrast, the collision
frequencies obtained for a plasma with upper chromospheric conditions are not negligible in
comparison with the cyclotron frequencies and, consequently, friction has a strong impact in
the properties of the oscillation modes, specially at the high-frequency range.

Finally, the investigation of waves excited by a periodic driver has revealed another im-
portant reason to take into account the effect of elastic collisions. The momentum transfer
associated to that interaction removes the resonances and the strict cutoffs that appear in the
collisionless case. Friction produces diffusion of the energy of the perturbations. Thus, left-
hand waves generated by a driver with a frequency that coincides with any of the cyclotron
frequencies or is in the range of the cutoffs can propagate, instead of having a null phase speed
or being evanescent. However, they are still strongly damped in space.
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Appendix 3.A:

Coefficients of the matrices A±

A11,± = (ω∓Ωp)±
ZpnpΩp

ne
+ i(νpH +νpHe+νpHe ii+νpHe iii +νpe)+ i

Z2
pn

2
pe

2

ρp
η−i

2Zpnp

ne
νpe (A.1)

A12,± = ±ZHeiinHe iiΩp

ne
− iνpHe ii + i

ZpnpZHe iinHe iie
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ρp
η − i

ZHeiinHe ii
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νpe − i

Zpnp
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αHe iie

ρp
(A.2)
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ρp
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A26,± =
kxΩHe ii

eneµ0
± i

ekxZHe iinHe ii

µ0ρHe ii

η ∓ i
kx

eneµ0
νHe iie (A.12)

A31,± = ±ZpnpΩHe iii

ne

− iνHe iiip + i
ZpnpZHe iiinHe iiie

2

ρHe iii

η − i
Zpnp

ne

νHe iiie

− i
ZHe iiinHe iii

ne

αpe

ρHe iii

(A.13)

A32,± = ±ZHe iinHe iiΩHe iii

ne

− iνHe iiiHe ii + i
ZHe iinHe iiZHe iiinHe iiie

2

ρHe iii

η

− i
ZHe iinHe ii

ne
νHe iiie − i

ZHe iiinHe iii

ne

αHe iie

ρHe iii

(A.14)

A33,± = (ω ∓ ΩHe iii) ±
ZHe iiinHe He iiiΩHe iii

ne

+ i(νHe iiip + νHe iiiH + νHe iiiHe + νHe iiiHe ii + νHe iiie)

+ i
Z2

He iii
n2

He iii
e2

ρHe iii

η − i
2ZHe iiinHe iii

ne
νHe iiie (A.15)

A34,± = −iνHe iiiH − i
ZHe iiinHe iii

ne

αeH

ρHe iii

(A.16)

A35,± = −iνHe iiiHe − i
ZHe iiinHe iii

ne

αeHe

ρHe iii

(A.17)

A36,± =
kxΩHe iii

eneµ0

± i
ekxZHe iiinHe iii

µ0ρHe iii

η ∓ i
kx

eneµ0

νHe iiie (A.18)

A41,± = −iνHp − i
Zpnp

ne

νHe (A.19)

A42,± = −iνHHe ii − i
ZHe iinHe ii

ne
νHe (A.20)

A43,± = −iνHHe iii − i
ZHe iiinHe iii

ne
νHe (A.21)

A44,± = ω + i(νHp + νHHe + νHHe ii + νHHe iii + νHe) (A.22)

A45,± = −iνHHe (A.23)

A46,± = ∓i
kx

eneµ0
νHe (A.24)

85



APPENDIX 3.A
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Chapter 4

Small-amplitude perturbations in
partially ionized plasmas∗

4.1 Introduction

The consideration of the effects of partial ionization is of wide interest due to the fact that
there are many astrophysical and laboratory plasmas where neutrals represent a non-negligible
fraction of the total mass. Thus, the presence of those neutral species may produce an impor-
tant deviation from the behavior predicted by MHD for a fully ionized plasma. For instance,
Piddington [1956] and Watanabe [1961a] showed that the exchange of momentum between ions
and neutrals by means of collisions causes the damping of Alfvén waves. Moreover, when the
collision frequency is large compared to the oscillation frequency, the phase speed of Alfvén
waves is reduced in comparison with the fully ionized case because the inertia of the neutrals
has to be taken into account in addition to that of ions, as shown by, e.g., Kumar and Roberts
[2003]. Nevertheless, partial ionization does not only affect the properties of waves in plasmas
but there is a huge number of physical situations in which it may play an important role. In
laboratory plasmas, the effects of the interaction between the ionized and the neutral species
has been studied by, e.g., Woods [1962], Jephcott and Stocker [1962] or Mueller [1974] in ex-
periments involving discharge tubes. Regarding astrophysical plasmas, the presence of neutrals
has been taken into account, for instance, in the investigation of heating and gravitational
collapse of interstellar gas clouds (Scalo [1977], Black and Scott [1982]), magnetic reconnection
(Zweibel [1989]), driving of chromospheric spiculles (Haerendel [1992]), star formation (Mestel
and Spitzer [1956], Fiedler and Mouschovias [1992, 1993], Pinto et al. [2008]), acceleration of
the solar wind (Allen et al. [1998]), the support of solar prominences against gravity (Terradas
et al. [2015]) or solar coronal rain (Oliver et al. [2016]).

As shown by the works of Braginskii [1965], De Pontieu et al. [2001], Khodachenko et al.
[2004], Forteza et al. [2007] or Soler et al. [2009a], the single-fluid approximation for the study of
partially ionized plasmas is appropriate when the frequency of waves is lower than the collision
frequencies between ionized and neutral species. However, it becomes inaccurate when waves
have frequencies of the order of or larger than the collision frequencies. In that range, each

∗This chapter is based on: Mart́ınez-Gómez, D., Soler, R. and Terradas, J.; 2016, Multif-fluid approach
to high-frequency waves in plasmas. II. Small-amplitude regime in partially ionized media, The Astrophysical
Journal, 837:80 (Mart́ınez-Gómez et al. [2017])
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species may have a different dynamics and the single-fluid approach fails to properly describe
the behavior of the waves in the plasma. Hence, a more general model is required, which is
the motivation of the investigation presented in this chapter. Thus, the multi-fluid detailed in
Chapter 2 will be applied here to partially ionized plasmas, with a focus on several regions of
the solar atmosphere.

The parameters of the plasmas chosen for this study can be found in Tables 4.1 and 4.2:
region I corresponds to the upper chromosphere, at a height of 2016 km over the photosphere,
where the number density of ions exceeds by an order of magnitude the number density of
neutrals; region II represents a cool prominence, where neutrals and ions have similar densities;
and region III corresponds to a plasma of the lower chromosphere at a height of 500 km
above the photosphere, which is a very weakly ionized environment. The collision frequencies
presented in Table 4.2 are computed from the friction coefficients given by Equations (2.60) and
(2.62). However, it must be noted that only half of the total collision frequencies involved in the
problem are shown; the remaining ones can be computed taking into account that αst = αts, so
that ρsνst = ρtνts. The values of the magnetic field for the chromospheric regions are obtained
from the semi-empirical model of Leake and Arber [2006], which represents the magnetic field
strength in a chromospheric expanding tube as

|B0| = Bph

(
ρ

ρph

)0.3

, (4.1)

where ρ is the total density at the given height, and Bph and ρph are the magnetic field and
the total density, respectively, at the photospheric level. The chosen reference values are Bph ≈
1500 G and ρph ≈ 2 × 10−4 kg m−3. The Alfvén speed, cA, is given by

cA =
|B0|√
µ0ρi

, (4.2)

where ρi is the sum of the densities of the ionized species.

Table 4.1: Parameters of different partially ionized plasmas solar plasmas

Region I II III

np (m−3) 7 × 1016 1.4 × 1016 1.9 × 1016

nH (m−3) 6 × 1015 2 × 1016 2.7 × 1021

nHe (m−3) 1015 2 × 1015 2.7 × 1020

nHe ii (m−3) 6 × 1015 – 6.5 × 1011

nHe iii (m−3) 1015 – 7.2
T (K) 20000 10000 4700
B0 (G) 22 10 480

cA (km s−1) 153 184 7600
Ωp (rad s−1) 210740 95800 4.6 × 106

ΩHe ii (rad s−1) 52685 23950 1.15 × 106

ΩHe iii (rad s−1) 105370 47900 2.3 × 106

Regions I and III correspond to the chromosphere at heights 2016 km and 500 km above the photosphere, respectively;
temperatures and number densities are taken from the Model F of Fontenla et al. [1993]. Region II represents a prominence at an

altitude of 10000 km and gas pressure of Pg = 0.005 Pa according to Heinzel et al. [2015].

88



4.1. INTRODUCTION

Table 4.2: Collision frequencies in Hz

Region I II III

νpH 120 270 2.5 × 107

νpHe 2.5 3.5 320000
νpHe ii 2000 – 1.7
νpHe iii 1260 – 7 × 10−11

νpe 660 330 1240
νHHe 3.5 5.2 480000

νHHe ii 3.2 – 2 × 10−4

νHHe iii 0.2 – 8 × 10−16

νHe 7.5 1 0.9
νHeHe ii 29 – 1.5 × 10−3

νHeHe iii 0.03 – 10−16

νHee 0.6 0.1 0.1
νHe iiHe iii 540 – 4 × 10−11

νHe iie 170 – 320
νHe iiie 640 – 1200

The reason for choosing the above mentioned environments is that the variety of degrees
of ionization represented by those three plasmas allows to get a more general insight into the
effects of partial ionization on the propagation of waves.

Several issues of great relevance can be addressed with the application of the multi-fluid
theory to the chosen set of partially ionized plasmas. For instance, as shown in the previous
chapter, the multi-fluid theory predicts the existence of various additional oscillation modes that
are overlooked by the single-fluid models. Therefore, since three different kinds of collisions
will be considered in this chapter, namely magnetic resistivity, which is caused by collisions
with electrons, and ion-ion and ion-neutral momentum transfer collisions, a comparison of the
effect of each diffusive mechanism on the periods and the damping rates of each oscillation
mode can be performed. Thus, the relative influence on the properties of waves of those three
interactions can be studied for different degrees of ionization and ranges of frequencies and
wavenumbers. Then, it is also possible to analyze the particular behavior of each component
of the plasma after a perturbation has been applied to the whole fluid and to check how this
behavior varies for a wide range of frequencies. In addition, the multi-fluid theory reveals
another property of Alfvén waves in partially ionized plasmas that is not predicted by the
single-fluid approximations: according to Kulsrud and Pearce [1969] and Pudritz [1990], under
certain circumstances, Alfvén waves may have cutoffs caused by the friction between ions and
neutrals.

In the same way as in Chapter 3, here the investigation will be performed by means of two
methods. In the first place, Section 4.2 shows the results obtained from the analysis of the
dispersion relation for small-amplitude perturbations. Then, Section 4.3 presents the results of
several numerical simulations, which are then shown to be consistent with those obtained from
the dispersion relation, but also include some nonlinear effects that cannot be addressed by the
previous method. For instance, the increase of the internal energy of the plasmas due to the
frictional dissipation of the energy of the initial perturbation is explored.
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4.2 Analysis of the dispersion relation

As in the previous chapter, the dispersion relation for small-amplitude incompressible pertur-
bations can be obtained from Equation (3.12). However, in contrast with the fully ionized case,
here the terms associated with the neutral species and with electron collisions are taken into ac-
count instead of being neglected. Since plasmas composed of five species (apart from electrons)
are considered, a sixth-order polynomial in ω is obtained for each direction of polarization. Due
to their complexity, each of those equations are solved numerically.

4.2.1 Waves excited by an impulsive driver

In the same way as in Section 3.3.1, to analyze the behavior of waves excited by an impulsive
driver, the dispersion relations are solved as functions of a real wavenumber, kx, assuming that
the solution frequency may be complex, i.e., ω = ωR + iωI .

The results of solving the dispersion relation with parameters corresponding to the upper
chromospheric region are shown in Figure 4.1, where only the solutions with ωR > 0 are
represented (it must be reminded that the solutions with ωR < 0 can be obtained by reflecting
with respect to the horizontal axis those shown here but exchanging the polarizations). To
understand the influence of resistivity, two different situations have been analyzed: on the
left panels the effect of collisions with electrons has been included, while on the right panels
it has not been taken into account. It can be seen that resistivity has a negligible effect in
the low wavenumber range but that it greatly enhances the damping of the R mode at high
wavenumbers. On the other hand, the L modes are almost unaffected by this type of collisions.
This huge contrast in the way resistivity affects each polarization can be understood as follows.
Since the inertia of electrons has been neglected, they are frozen to the magnetic field. On
the contrary, ions, whose direction of gyration coincides with the rotation of the left-hand
polarized waves, are not as tight to the magnetic field at high frequencies due to Hall’s effect.
Thus, the velocity drifts between electrons and ions, Ve − Vi, are larger when the gyration of
ions is opposite the rotation of waves, i.e., for the R modes. Consequently, the friction forces
associated to collisions with electrons are larger for R modes than for L modes.

The right panels of Figure 4.1 can be also compared with the results for the fully ionized
case shown in Figure 3.6. It can be seen that in both graphics the real part of the four solutions
associated with the ionized species is almost identical, with the dissimilarities appearing in the
imaginary part: the inclusion of collisions with neutrals produces a larger damping on the four
modes. This enhanced damping is more obvious in the Alfvénic modes at small wavenumbers.
Hence, it can be concluded that at small wavenumbers, the damping of waves is dominated
by the collisions with neutrals, while the contribution of collisions between ionized species is
more important at large wavenumbers. The reason for such a behavior is that waves are more
efficiently damped when the collision frequency is closer to the oscillation frequency (see, e.g.,
Leake et al. [2005], Zaqarashvili et al. [2011a], Soler et al. [2013b]), and, as shown in Table 4.2,
the interactions with neutrals have lower frequencies than the collisions between ions.

Another remarkable difference that arises in the partially ionized case with respect to the
fully ionized one is the appearance of two additional modes associated with the two neutral
species. These modes are represented in Figure 4.1 by the blue dotted and dashed-dotted lines
and have received in previous works the names of vortex modes (Zaqarashvili et al. [2011b])
or forced neutral oscillations (Vranjes and Kono [2014]). According to Soler et al. [2013b], the
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Figure 4.1: Solutions of Equation (3.12) for the case of an impulsive driver and upper chromo-
spheric conditions, with resistivity (left panels) and without (right). Top: normalized frequency,
ωR/Ωp, as a function of the normalized wavenumber, kxcA/Ωp; bottom: absolute value of the
normalized damping rate, |ωI |/Ωp, as a function of the normalized wavenumber. The blue lines
are solutions associated to the presence of neutral species. The solid black lines represent the
Alfvén frequency, ωA. The horizontal dotted lines represent the cyclotron frequencies of the
three ionized species, with Ωp > ΩHeiii > ΩHeii.

vortex modes describe how vorticity perturbations in the neutral fluid decay in time due to
the interaction of neutrals with ions. In a collisionless plasma, these modes do not propagate,
since they have a null frequency. But when collisions are considered, their frequency becomes
different from zero, although with |ωR ≪ ωI |; hence, such modes are heavily overdamped.

The results described in the previous paragraphs correspond to a plasma where the abun-
dance of neutrals is lower than that of ions. Thus, the dynamics of the plasma is dominated by
the behavior of ions, although there is a small influence from the neutral species. This influence
is expected to be larger in the other two regions that are going to be studied next because of

91



4.2. ANALYSIS OF THE DISPERSION RELATION

the larger amount of neutrals.
The case of a plasma with properties akin to those in solar prominences is illustrated in

Figure 4.2, where the modes associated with the helium ions are not represented because Table
4.1 does not provide data about the abundances of those elements. Indeed, the temperature
in prominence cores is low enough to assume that helium is fully neutral. In contrast with
the previous figure, the effect of the presence of neutrals can be clearly distinguished at low
wavenumbers in the top panel: due to the strong coupling between ions and neutrals at this
range, the Alfvénic modes do not oscillate with the classical Alfvén frequency ωA = kxcA, but
with a smaller modified Alfvén frequency given by

ω̃A = kxc̃A =
ωA√

1 + ρn/ρi

, (4.3)

where ρn is the sum of the densities of the neutral species. This equation is a generalization
of Equation (27) from Soler et al. [2013b] or Equation (19) from Zaqarashvili et al. [2013],
applicable when the collision frequencies between neutrals and ions are much larger than the
Alfvén frequency. In that limit, the coupling between all species is so strong that they behave
as a single fluid and the inertia of the neutrals must be taken into account in the description
of Alfvén waves.

Then, it can be seen that as the wavenumber increases and the Alfvén frequency is no longer
much lower than the ion-neutral collision frequencies, the oscillation frequencies of the Alfvénic
modes tend to the ωA before splitting into two different branches. The damping of these
solutions is small for small wavenumber but becomes important for larger values, particularly
in the case of the R mode, which is predominantly affected by collisions with electrons.

The vortex modes shown in Figure 4.2 have much lower oscillation frequencies than the
Alfvénic modes. This is due to their excitation being indirectly caused by the magnetic field
through the collisions of neutrals with ions. On the other hand, their damping is higher at

Figure 4.2: Solutions of Equation (3.12) for the case of an impulsive driver and prominence
conditions. The colors and styles are the same as in Figure 4.1, with the addition of a green
dotted line that represents the normalized modified Alfvén frequency, ω̃A/Ωp.
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small wavenumbers. Thus, these modes are much more short-lived.
Using a two-fluid model to describe Alfvén waves in a partially ionized hydrogen plasma,

Soler et al. [2013b] found approximate expressions for the damping of the evanescent or vortex
mode. In the limit when the collision frequency is much smaller than the Alfvén frequency,
they found that the damping rate is given by ωI,vort ≈ −νHp, while in the opposite limit, it is
given by ωI,vort ≈ −(1 + χ)νHp, where χ = ρn/ρi. The vortex solutions plotted in the right
panel of Figure 4.2 display a behavior consistent with those analytic approximations. They
tend to a constant value in each limit, with the damping being larger at low wavenumbers,
where ν ≫ kxcA. A precise expression for those limiting values is not provided, since it involves
a combination of a great number of parameters and its calculation is not as straightforward as
the one obtained by Soler et al. [2013b].

Inspecting the top panel of Figure 4.2 it can be seen that the L mode represented by a
dotted line has a quite strange behavior in the low wavenumber limit: it displays a sharp
minimum in frequency at about kxcA/Ωp ≈ 5× 10−4 while none of the other modes show those
abrupt variations. It has been found that this behavior is a consequence of the electron-neutral
interaction. This statement is supported by Figure 4.3, where the analysis of the simpler case
of a plasma composed of protons, electrons and neutral hydrogen is represented. The sharp
minimum appears only on the right panel, which corresponds to the case in which the effect
of electron-neutral collisions has been included. Nevertheless, it must be noted that the sharp
minimum is just apparent and is caused by the way in which the solutions are represented in
Figures 4.2 and 4.3. Its apparent nature is revealed in Figure 4.4, where the solutions with
ωR < 0 are also plotted. Due to collisions with electrons, the L vortex has ωR < 0 at small
wavenumbers, and they change to ωR > 0 when the wavenumber increases. The opposite
happens to the R modes.

Figure 4.3: Normalized oscillation frequency as a function of the normalized wavenumber for
a two-fluid plasma (protons-electrons + neutral hydrogen). The left panel shows the solutions
for νHe = 0, while the right panel represent the case where collisions between neutral hydrogen
and electrons has been taken into account.

Next, Figure 4.5 shows the results which correspond to a plasma in the low chromosphere
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Figure 4.4: Magnification of the small-wavenumber and low-frequency region of the top panel
of Figure 4.2 (including also the solutions with ωR < 0). The blue lines represent the L modes,
while the orange lines represent the R modes.

at a height of 500 km above the photosphere. There, the abundance of neutral particles is
several orders of magnitude larger than the abundances of ions. In addition, the large densities
lead to high values of collision frequencies. Both circumstances cause a huge departure of the
modified Alfvén frequency from ωA, as can be checked in the top panel. An important difference
from the results obtained in plasmas with a higher degree of ionization is that now it is not
easy to distinguish between the vortex, Alfvénic, and ion-cyclotron modes. Their properties
seem to be mixed up when the plasma is mainly composed of neutrals. For instance, at small
wavenumbers, there is one solution that in the previous cases was identified as a vortex mode
but that here has a higher oscillation frequency than the Alfvénic modes, and that for large
wavenumbers tends to the proton cyclotron frequency, as if it were an ion-cyclotron wave. Also,
the L mode that emerges from the Alfvénic branch does not tend to the cyclotron frequency
of any ion but to the value Ωp/(1 + χ), as if it were an effective cyclotron frequency (Mueller
[1974]) for this plasma. These results point out the dramatic effect of neutrals on the behavior
of the waves in conditions of very low ionization.

In Chapter 3, it has been shown that a very useful tool to analyze the properties of the
perturbations is the quality factor, which, for waves generated by an impulsive driver, is defined
as Qω ≡ 1/2|ωR/ωI |. Hence, it will be employed in this chapter also. Figure 4.6 displays the
quality of (a) the solutions for the case of the higher chromosphere with resistivity, (b) the case
of the prominence, and (c) the lower chromosphere. It can be seen that, in the three studied
regions, the vortex modes are overdamped, specially at small wavenumbers, and, hence, the
energy associated to these modes is not transported far from where the perturbation originates
but it is dissipated in situ. The remaining perturbations are underdamped. The R mode (red
solid line) has the larger Qω of all modes at all values of kxcA/Ωp, except for the case of the
lower chromosphere: in panel (c) it can be seen that there is a region, between kxcA/Ωp ≈ 10−3

and kxcA/Ωp ≈ 2, where one of the cyclotron modes has a larger value of Qω. None of the
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Figure 4.5: Solutions of Equation (3.12) for the case of an impulsive driver and parameters
that correspond to a region in the low chromosphere. The colors and styles are the same as
in Figure 4.1, with the addition of a green dotted line that represents the normalized modified
Alfvén frequency.

(a) (b) (c)

Figure 4.6: The panels (a), (b) and (c) represent the quality factors of the solutions shown
in the left panels of Figure 4.1, in Figure 4.2 and in Figure 4.5, respectively. The grey areas
correspond to values of Qω < 1/2, where the waves are overdamped.
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modes is evanescent.

Apart from all the properties of waves already investigated throughout this section, there
is another characteristic worth analyzing, namely the existence of cutoff regions caused by
the interaction between ions and neutrals. This issue is of considerable relevance, because it
demonstrates how multi-fluid models may reveal effects that are overlooked by the single-fluid
approximations. By means of two-fluid models, Kulsrud and Pearce [1969] and Pudritz [1990]
found that partially ionized plasmas may present regions of wavenumbers where all modes are
evanescent: oscillatory modes are suppressed in those cutoff intervals due to the strong friction
caused by the collisions of ions with neutrals. However, this behavior is not found in all partially
ionized plasmas but only in those which fulfill the condition χ > 8, as shown by Soler et al.
[2013b]. By inspecting Table 4.1, it can be seen that the region of the lower chromosphere
studied in this section clearly fulfills that condition. Nonetheless, according to Figure 4.6, it
has no cutoffs regions. Hence, it seems to contradict the findings of those previous works.

In a later work, Soler et al. [2015a] took into account the effects of Hall’s term, resistivity,
electron inertia, and viscosity in the study of wave damping in partially ionized plasmas in the
solar chromosphere and showed that in a more realistic situation there are no strict cutoffs.
They found that Alfvén waves may be underdamped or overdamped depending on the specific
physical parameters of the plasma but that those modes can always be excited. Those authors
also demonstrated that the removal of the cutoffs is due to the effect of Hall’s current (see, e.g.,
Lighthill [1960], Pandey and Wardle [2008], Zaqarashvili et al. [2012]), and electron inertia.
Since in the present investigation electron inertia has not been considered, the mechanism
that explains the absence of the cutoffs in the studied region of the lower chromosphere is
Hall’s current: electrons dynamics is different than that of ions; they stay more coupled to the
magnetic field than ions, allowing the propagation of Alfvén waves, while ion-neutrals collisions
would be able to completely suppress the oscillations if electrons were tightly coupled to ions.

Nevertheless, the regions of the solar chromosphere analyzed by Soler et al. [2015a] do not
coincide with those studied in this section and, hence, a direct comparison between the results
of the two investigations cannot be made. Those authors explored an altitude range from 600 to
2000 km, while here only two specific heights, which are out of that range, have been analyzed.
Thus, to perform an appropriate comparison, the next step is to compute the quality factor of
waves at an altitude that is inside the range chosen by Soler et al. [2015a]. Figure 4.7 displays
the results for a height of 1175 km over the photosphere, with parameters taken again from
the Model F of Fontenla et al. [1993]. At such height, the magnetic field is B0 ≈ 110 G and
the temperature is T ≈ 6500 K. This figure shows that there is an interval of wavenumbers,
between kxcA ≈ 10−2 and kxcA/Ωp ≈ 0.1, where all the represented modes are overdamped.
This is in good agreement with the results shown in Figures 3(b) and (d) of Soler et al. [2015a].
Thus, although there are no strict cutoff regions in the middle chromosphere either, an interval
of wavenumbers for which the solutions are overdamped remains even when Hall’s current and
electron-neutral collisions are taken into account.

4.2.2 Waves excited by a periodic driver

The investigation of fully ionized plasmas detailed in Section 3.4 showed that the addition of
new ionized species to a multi-fluid plasma does not increase the number of oscillations modes
in the case of waves generated by a periodic driver. The same occurs when the additional
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Figure 4.7: Quality factor of waves excited by an impulsive driver in a plasma with conditions
of the chromosphere at a height of 1175 km over the photosphere (for the sake of clarity, the
cyclotron modes associated to the helium ions are not plotted here).

species are neutral, as it will be checked in this section. Hence, if the dispersion relations are
solved as functions of a real frequency ω, only two solutions of the form kx = kR + ikI will be
obtained for each polarization.

In the following lines, the same regions of the solar atmosphere as in the case of the impulsive
driver will be studied. In the first place, Figure 4.8 shows the results for a plasma with
parameters corresponding to a region in the chromosphere at an altitude of 2016 km over
the photosphere. Several different cases have been represented in this figure, with the goal
of obtaining a better understanding of the relevance of the different collisional interactions
included in the model. For instance, the left panels display a comparison between the case
in which all types of collisions are considered and the one in which interaction with neutrals
is neglected. It can be seen that the effect of neutrals is particularly important in the low-
frequency range, where it produces a remarkably stronger damping than when only collisions
between ionized species are taken into account. At higher frequencies, there are no appreciable
differences between the two situations, which means that the collisions with neutrals are not
as relevant as the collisions between ions.

On the right panels of Figure 4.8, the case that includes all the collisions between the
species is compared with the situation in which resistivity is ignored. The results demonstrate
that the inclusion of resistivity produces a larger damping of the R mode at high frequencies,
while the damping of the L mode is not modified. However, concerning the real part of the
wavenumber, it is the ion-cyclotron mode that is more affected: at high frequencies, it has
a larger wavenumber when collisions with electrons are involved and hence, it propagates at
a smaller speed. The real part of the wavenumber of the R mode shows no variations. In
addition, by inspecting any of the four panels, it can be checked that all solutions are finite
at the cyclotron frequencies, which means that the resonances are removed due to the friction
between species. The cutoff regions are removed as well.
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Figure 4.8: Solutions of Equation (3.12) for the case of a periodic driver and parameters
corresponding to a region in the high chromosphere (region I from Table 4.1). The wavenumber
and the spatial damping are shown as functions of the frequency in the top and the bottom
panels, respectively. The thin black lines on the left panels represent the solutions when the
collisions with neutrals have been ignored. On the right panels, the thin black lines represent the
case without resistivity. The diagonal black line corresponds to the Alfvén frequency, ωA. The
red lines correspond to the case where all the effects have been taken into account. The dotted
vertical lines mark the position of the frequencies of resonances, with Ωp > ΩHe iii > ΩHe ii.

Next, the results corresponding to the remaining two regions, where neutrals are the most
abundant species, are shown in Figure 4.9. The left panels correspond to a plasma with con-
ditions akin to that of a prominence, and the right panels display the results for a region in
the low chromosphere. On the left area of the top panels, a range in which the frequency
of the driver is smaller than the collision frequencies, all the fluids are strongly coupled and
the wavenumber of the oscillations is larger than in the fully ionized case (represented by the
black solid line). Thus, the perturbations propagate at a slower speed, given by c̃A. Moreover,
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since all the species behave in that range almost as a single fluid, the spatial damping of the
perturbations is smaller than at higher frequencies, where the coupling is not as strong and the
frictional force increases due to the velocity drifts between the species.

Figure 4.9: Normal modes of perturbations excited by a periodic driver. The left panels corre-
spond to prominence conditions, while the right panel correspond to conditions of a region in
the low chromosphere. The green dotted line on the top right panel represents the wavenumber
related to the modified Alfvén speed. The vertical blue lines on the right panels represent the
position of the Hall frequency, ωH.

As the frequency of the driver increases, the separation between the L and the R modes
becomes evident. For the case of the prominence, the separation occurs when the frequency
of the driver approaches the lower ion-cyclotron frequency, a behavior similar to that shown
in Figure 4.8 or in the fully ionized plasmas studied in Chapter 3. However, the right panels
of Figure 4.9 show that when the abundance of neutrals is much higher than the abundance
of ions and there is a very strong coupling between them, the split appears at values much
lower than the cyclotron frequencies. This fact can be related to the investigations of Pandey
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and Wardle [2008] and Pandey and Dwivedi [2015]. By means of a single-fluid description of
three-component plasmas (electrons, ions and neutrals), those authors found that the effect of
Hall’s current becomes important and, hence, there is a clear distinction in the properties of
the L and R waves when the frequency ω is of the order of or larger than the so-called Hall
frequency, which is defined as

ωH ≡ ρi

ρi + ρn
Ωi. (4.4)

It must be noted that this definition coincides with what in Section 4.2.1 has been called the
effective cyclotron frequency. The Hall frequency plays in weakly ionized plasmas the same role
as the cyclotron frequency in fully ionized plasmas. Moreover, it is straightforward to check
that ωH = Ωi in the latter case. In contrast, when a weakly ionized plasma is considered, e.g., in
the lower solar chromosphere, ωH ≪ Ωi, which means that Hall diffusion has a great influence
on the dynamics of the plasma even at very low frequencies. Thus, the results shown in the
right panels of Figure 4.9 are consistent with the findings of Pandey and Wardle [2008] and
Pandey and Dwivedi [2015]. It can be checked that the position of the peak that appears in
both the top and the bottom panels, and that resembles the resonances found in fully ionized
plasmas, corresponds to the Hall frequency, ωH ≈ 5 × 10−6Ωp.

Following the same procedure as in previous section, now the quality factor of the pertur-
bations, which for a periodic driver is defined as Qk ≡ 1/2|kR/kI |, will be computed. Figures
4.10(a)-(c) represent the quality factor of the normal modes shown in the left panels of Figure
4.8, and the left and right panels of Figure 4.9, respectively. In Figure 4.10(a), it can be seen
that the low-frequency modes have a smaller Qk when collisions with neutrals are taken into
account than when only collisions between ions are considered. However, in both cases, Qk is
of the order of or larger than ∼ 100, which means that the perturbations are underdamped
and it would take several periods to find a remarkable decrease in their amplitudes. At higher
frequencies, the L and R modes display very contrasting behaviors. The quality factor of the
former tends to the critical value Qk = 1/2 when the frequency of the driver approaches the
lower ion-cyclotron frequency and, after a short interval in which it slightly increases again,
finally crosses that boundary at the higher ion-cyclotron frequency, meaning that it becomes
overdamped. On the other hand, the R mode is always underdamped, with values of Qk & 100.

(a) (b) (c)

Figure 4.10: Quality factor, Qk, of waves excited by a periodic driver. The left panel corresponds
to the results shown on the left panels of Figure 4.8. The middle and the right panels correspond
to the results shown on the left and right panels of Figure 4.9, respectively.
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Figure 4.11: Quality factor of waves excited by a periodic driver in a plasma with conditions
of the chromosphere at a height of 1175 km over the photosphere.

Similar behavior is found in Figure 4.10(b), although the Alfvénic modes have a lower
Qk due to a larger presence of neutrals in this plasma that produces greater friction and
dissipation of the energy carried by the perturbation. Figure 4.10(c), which represents the
weakly ionized environment of the low chromosphere, shows that the point where the L mode
becomes overdamped coincides with the Hall frequency given by Equation (4.4), and that there
are approximately two orders of magnitude of difference between the quality factors of the two
polarizations, even at low frequencies.

Once more, it is interesting to compare the results presented in the paragraphs above with
those detailed in Soler et al. [2015a] regarding the subject of the possible existence of cutoffs or
intervals of frequencies where the perturbations are overdamped. In the ranges of heights and
frequencies studied by those authors, the perturbations are found to be underdamped instead
of overdamped. As in the previous section, the comparison with that work is performed by
means of the analysis of a region of the low chromosphere at 1175 km over the photosphere.
The results are plotted in Figure 4.11. It can be checked that there is an interval of frequencies,
ω/Ωp & 1, where the L mode is overdamped. However, such interval has not been explored in
the investigation of Soler et al. [2015a], so that it is not relevant for the present comparison.
At lower frequencies, both modes are underdamped, which seems to be in good agreement
with what is shown in Figures 4(b) and (d) of Soler et al. [2015a]. However, there are some
slight differences between the two studies: in the cited paper, no noteworthy dissimilarities can
be seen in the quality factor of the two polarizations; on the other hand, Figure 4.11 shows
that the quality factor of the R mode is slightly larger than that of the L mode. This small
discrepancy may be caused by some of the effects that Soler et al. [2015a] included in their
model, like viscosity of each species or the electron inertia, which have been neglected in the
present analysis.
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4.3 Numerical simulations

In this section, the full temporal evolution of small-amplitude perturbations on homogeneous
partially ionized plasmas is computed by means of the numerical code MolMHD. All the sim-
ulations presented here will be one-dimensional and the focus will be put in the linear regime,
although some nonlinear effects will be briefly explored. A more comprehensive study of the
nonlinear regime is left for the next chapter.

4.3.1 Impulsive driver

Numerical simulations of waves excited by an impulsive are performed by superimposing an ini-
tial perturbation to the background and letting it evolve according to the equations described in
Chapter 2. In Section 3.5.1, the initial perturbation corresponded to the fundamental standing
mode of the numerical domain. This procedure could be applied to the present investigation.
However, another kind of perturbation has been chosen here: a Gaussian profile, which can be
expressed as

f(x, t = 0) = f0 exp

(
−
(

x − x0√
2σx

)2
)

, (4.5)

where f0 is the amplitude of the perturbation, x0 the position of the peak, and σx the root-
mean-square width, which is related to the FWHM by the formula FWHM = 2

√
2 ln 2σx. The

perturbation is then superimposed on a static medium with a background magnetic field given
by B0(x) = (B0, 0, 0)T .

Here, not all the regions of the solar atmosphere investigated in the previous section will
be studied but only those where neutrals have a larger impact in the dynamics of the plasma.
Hence, simulations will be performed with the parameters of regions II and III of Table 4.1.

In the first place, the case of the solar prominence will be explored. The initial perturbation
is applied to the y-component of the velocity of every species, with the peak at the position
x = 0. Thus,

Vs,y(x, t = 0) = Vy,0 exp

(
−
(

x√
2σx

)2
)

, (4.6)

where the amplitude is chosen as Vy,0 = 10−3cA to ensure that the simulation stays in the linear
regime. The value of σx is chosen in a way that FWHM = 1.5 × 104 m and the domain of
the simulation is x ∈ [−l, l], with l = 2 × 105 m. The results of this simulation are shown in
Figure 4.12. On the one hand, it can be seen that protons and hydrogen are strongly coupled
and that they behave almost as a single fluid. On the other hand, the coupling with other
species is weaker in the case of helium. Thus, the latter fluid reacts with some delay with
respect to the protons and hydrogen to the fluctuations in the plasma. the perturbation of the
proton-hydrogen fluid is propagating approximately at the modified Alfvén speed, c̃A, while the
helium is trailing behind at a slightly slower speed. As time advances, the initial perturbation
splits into two smaller Gaussian-like functions that propagate in opposite directions. In a case
without collisions, the amplitudes of each bulge would be one-half of the original, and they
would remain constant during the whole simulation. But here, their amplitudes decrease with
time; moreover, the shapes of the perturbations are not symmetric with respect to the position
of their peaks, and their FWHMs increase with time. Such a departure from the collisionless

102



4.3. NUMERICAL SIMULATIONS

behavior is caused by the loss of kinetic energy and the dispersion of the normal modes due to
friction.

(a) (b) (c)

(d) (e) (f)

Figure 4.12: Simulation of waves generated by an impulsive driver with a Gaussian profile for
prominence conditions. The red solid line corresponds to the protons, the blue dashed line
shows the motion of neutral hydrogen and the green dotted-dashed line corresponds to the
neutral helium. The dotted vertical line represents the position of points moving at Alfvén
speed, while the vertical dotted-dashed line represents a motion at the modified Alfvén speed,
c̃A. (An animation of this figure is available.)

Next, Figure 4.13 displays the results of a simulation with lower chromospheric conditions.
The characteristic length for this simulation is l = 2.5 × 105 m. It must be noted that in
this environment helium ions are also present. However, their abundances are negligible in
comparison with those of protons, neutral hydrogen, and neutral helium. Moreover, they
are strongly coupled to protons due to the action of the magnetic field. For those reasons,
the motions of singly and doubly ionized are not represented in this plot. The simulation
illustrates the high level of coupling that exists between the neutrals and ions in this region
of the chromosphere: it can be checked that their perturbations propagate together at the
modified Alfvén speed (c̃A ≈ 17 km s−1), which is much smaller than the classical Alfvén
speed (cA ≈ 7600 km s−1), due to the density of neutrals being much higher than that of ions.
Comparing Figure 4.13 with Figure 4.12, it can be seen that the decrease of the amplitude of
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the perturbations and the deformations of the Gaussian profiles are smaller in the former. The
reason is that in the case of the lower chromosphere the velocity drifts and the friction forces
associated with them are smaller than in the prominence.

(a) (b) (c)

(d) (e) (f)

Figure 4.13: Simulation of waves generated by an impulsive driver with a Gaussian profile for
conditions of the lower chromosphere. (An animation of this figure is available.)

It is also interesting to study the evolution of the different components of the wave energy
density during the simulations. The kinetic, magnetic and internal components of the spatially-
averaged energy density are defined as

eK =
1

2l

∫ l

−l

1

2

∑

s

ρs(x)Vs(x)2 dx, (4.7)

eB =
1

2l

∫ l

−l

1

2

B1(x)2

µ0

dx, (4.8)

eP =
1

2l

∫ l

−l

∑

s

P1,s(x)

γ − 1
dx, (4.9)

respectively. For the magnetic and the internal energy, only the perturbed values are taken
into account. The background values are not included because they are constant and only
the fluctuations are of interest here. The behavior of the total energy density and its three
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Figure 4.14: Temporal evolution of the total energy density, eT (blue solid lines), kinetic energy
density (red dotted-dashed lines), magnetic energy density (green dashed lines) and internal
energy density (black dotted lines). The left and right panels correspond to the simulations
shown in Figures (4.12) and (4.13), respectively.

components during the simulations shown in Figures 4.12 and 4.13 is represented in the left
and right panels of Figure 4.14. It can be seen that in the initial time all the energy is kinetic, as
it would be expected since it corresponds to the initial perturbation. As time evolves, a fraction
of the kinetic energy is transformed into magnetic and internal energies. After certain time step,
the kinetic and magnetic components have the same magnitude, i.e., there is equipartition of
magnetic and kinetic energy. In addition, the relative increase of internal energy is larger for
the case of the prominence (left panel) than for the low chromosphere (right). This is another
demonstration of the greater friction forces that are present in the prominence in comparison
with the lower chromosphere. In the prominence, the species are not as strongly coupled as in
the lower chromosphere and thus, there are larger differences in their velocities, which lead to
a larger dissipation of energy.

It must be reminded that, according to Equation (2.57), the energy transfer due to elastic
collisions is directly proportional to the collision frequencies but it has a quadratic dependence
of the velocity drifts. Thus, this heat transfer is a nonlinear effect and since the perturbations
studied here are in the linear regime, the increase of internal energy due to the perturbed
pressures is negligible compared with the internal energy associated with the total background
pressure.

4.3.2 Periodic driver

To simulate waves generated by a periodic driver, the same procedure as in Section 3.5.2 will
be used here: a periodic function of time will be imposed at a certain point of the numerical
domain. As it has already been shown, depending on the chosen driver, it may be possible to
excite both the L and R modes or only one of them. Here, the focus will be put on the L modes
only. There are two reasons to do so. First, the study of the fully ionized case performed in
the previous chapter and the analysis of the dispersion relations for partially ionized plasmas
in the present chapter have shown that the properties of the two modes are almost identical
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at frequencies much lower than the Hall frequency. Hence, it is not necessary to study both of
them and display twice the same results. The second reason is that the L modes are the ones
that present resonances (when collisions are not taken into account) in the range of frequencies
explored in this investigation.

Figure 4.15 shows the results of several simulations of waves excited by a periodic driver us-
ing the physical conditions that correspond to region I of Table 4.1, i.e., the high chromosphere.
The driver, applied to the point x = 0, is given by

Vs,+(x = 0, t) =




0
V0 cos (ωt)
−V0 sin (ωt)


 (4.10)

and

B1,+(x = 0, t) =




0
B1,0 cos (ωt)
−B1,0 sin (ωt)


 , (4.11)

which produces the excitation of the L mode. The amplitude of the magnetic perturbation is
given by B1,0 = −|B0|V0/cA, which corresponds to the relation that exists between those two
variables when Alfvén waves are considered. To ensure that the simulations stay in the linear
regime and that non-linear effects can be neglected, the amplitude of the driver is chosen as
V0 = 10−3cA.

Figure 4.15 shows that at a driving frequency of ω = 10−4Ωp, there is a strong coupling
between all the species and the perturbations travels at the speed c̃A. In addition, the damping
of the wave is in good agreement with that predicted by the dispersion relation, which is
represented by the black dotted lines. When the frequency of the driver is increased, it can
be found that the species begin to uncouple from each other. This behavior can be noticed in
Figure 4.15(b), where the first species to decouple from the others is neutral helium. The reason
is that the driving frequency, ω = 10−3Ωp ≈ 210 rad s−1, is larger than the collision frequencies
of helium, which are, for instance, νpHe ≈ 2.5 Hz, νHep ≈ 43 Hz, or νHHe ≈ 3.5 Hz, but is of
the order of or smaller than the collision frequencies of the other species, e.g., νpH ≈ 120 Hz
or νHp ≈ 1400 Hz. Thus, during one period of the oscillation, neutral helium particles do not
collide frequently enough with the other species for the neutral helium fluid to completely follow
the magnetic field oscillations.

If the driving frequency is increased up to ω = 10−2Ωp, the hydrogen fluid starts to exhibit
a similar behavior as the one explained for helium, as can be checked in Figure 4.15(c). Now,
the interaction of neutral helium with the other species is even weaker than before and the
amplitude of its oscillation is greatly reduced. Finally, Figure 4.15(d) shows that at frequencies
of the order of ω = 0.1Ωp ≈ 21000 rad s−1, even the ionized species begin to uncouple from
each other, due to the fact that ω is in this case larger than νpHe ii, νHe iip, νpHe iii, or νHe iiip.
At these frequencies, there is almost no interaction with the neutral species, and at even higher
frequencies, the perturbation behaves as if the medium were fully ionized, ignoring the presence
of neutrals. Hence, there is almost no propagation of the perturbation in the neutral fluids at
the high-frequency range.

To conclude this section, the case of a plasma with parameters corresponding to the lower
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(a) ω = 10−4 Ωp (b) ω = 10−3 Ωp

(c) ω = 10−2 Ωp (d) ω = 10−1 Ωp

Figure 4.15: Simulations of waves generated by a periodic driver with different frequencies in
a region of the solar chromosphere at a height of 2016 km over the photosphere. The red
solid, blue dashed and green dotted-dashed lines represent the y-component of the velocity of
protons, neutral hydrogen and neutral helium, respectively. The red diamonds and the black
crosses represent the singly and the doubly ionized helium, respectively. The vertical dotted
and dotted-dashed lines represent the position of points moving at the Alfvén and the modified
Alfvén speeds, respectively. The remaining black dotted lines show the damping computed
from the dispersion relation. (Animations of each panel of this figure are available: (a), (b),
(c) and (d)).
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chromosphere will be analyzed. Figure 4.16 represents a simulation with a driver given by

Vs(x = 0, t) =




0
V0 cos (ωt)
−V0 sin (ωt)


 , (4.12)

and a frequency of ω = 10−3Ωp. Although this value is much lower than the cyclotron frequen-
cies, it is also much larger than the Hall frequency, ωH ≈ 5 × 10−6Ωp. Hence, according to the
results displayed in Figure 4.10, it is expected that the perturbation is strongly overdamped.
We have used 2001 points to cover the domain x ∈ [0, 2] km, but only the section x ∈ [0, 0.5] km
is shown in the plot. Although the relevant physical behavior occurs in the displayed section,
the larger domain is used to avoid possible unwanted numerical effects caused by the rightmost
boundary.

It can be seen that there is a weak coupling between the motion of ions and neutrals.
Neutrals stay almost at rest, except close to x = 0, while the driver causes motion in the
ions that is spatially overdamped. While the amplitude oscillates with time according to the
driver imposed, an oscillatory behavior in space cannot be found, with the exception of the
small oscillation present in the left area. However, it has been checked that the extension and
amplitude of this oscillation depends on the spatial resolution resolution used in the simulation.
Thus, it is not a real physical behavior but it is a numerical artifact. Finally, as in the previous
cases, it can be seen that the damping of the perturbation agrees with the prediction from the
dispersion relation analyzed in Section 4.2.2.

Figure 4.16: Simulation of waves generated by a periodic driver with frequency ω = 10−3 Ωp in
a region of the solar chromosphere at a height of 500 km over the photosphere. The meaning
of the colors and styles of the lines is the same as in Figure 4.15. (An animation of this figure
is available.)
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4.4 Discussion

In this chapter, the multi-fluid model presented in Chapter 2 has been applied to the investi-
gation of partially ionized plasmas of the solar atmosphere. Three specific regions have been
studied: the high chromosphere at a height of 2016 km over the photosphere (where χ < 1),
a typical cool prominence (with χ ≈ 1), and the lower chromosphere at 500 km over the
photosphere (a weakly ionized plasma with χ ≫ 1). The investigation and comparison of
environments with such different degrees of ionization lead to a better understanding of the
influence of neutral species on the propagation of small-amplitude perturbations. In addition,
the effect of Ohm’s diffusion (or magnetic resistivity) has been taken into account thanks to a
more complete version of the generalized Ohm’s law. This improvement has allowed to check
that resistivity has a negligible influence on the properties of low-frequency waves, but that it
becomes an important effect when the frequency is increased, leading to a remarkable rise of
the damping of the R modes.

It has been found that the inclusion of neutral components in the plasma modifies the
oscillation period of the low-frequency waves and produces a damping on the perturbations,
as previously demonstrated by the works of Piddington [1956], Haerendel [1992], Forteza et al.
[2007], Soler et al. [2009a, 2012a] or Zaqarashvili et al. [2011a,b]. Then, in good agreement
with Soler et al. [2015a], it has been shown that in weakly ionized plasmas there are no strict
cutoffs for Alfvén waves generated by an impulsive driver, but that there may be intervals of
wavenumbers where the perturbations are overdamped.

The exploration of a wide range of frequencies and kinds of collisions between the species
has allowed to check that the damping of Alfvén waves is dominated by collisions with neutrals,
while the damping of the higher-frequency L and R modes is dominated by collisions with ions
and electrons. Such behavior is explained by the fact that the damping is more efficient when
the collision frequency is of the order of the oscillation frequency (Zaqarashvili et al. [2011a],
Soler et al. [2013b]) and that collisions with neutrals have lower frequencies than those between
charged species.

As in the case of fully ionized plasmas, it has been shown that the properties of the L modes
clearly diverge from those of the R modes at high enough frequencies due to the effect of Hall’s
current. For instance, the quality factors of the R modes are larger than those of the L modes.
In fully ionized plasmas, this separation occurs at oscillation frequencies of the order of the lower
cyclotron frequency. However, in the case of weakly ionized plasmas with ion-neutral collision
frequencies comparable or larger than the cyclotron frequencies, the effective gyrofrequency
of ions is greatly reduced (Pandey and Wardle [2008]) and Hall’s current greatly affects the
dynamics of the plasma even at frequencies of the order of the Hall frequency, ωH, which is
much smaller than Ωi. Here, it has been found that for the the studied region of the lower
chromosphere, Hall’s current plays a very important role in the propagation of waves even for
frequencies as low as 20 rad s−1, approximately. Moreover, it has been shown that in partially
ionized plasmas, due to the friction caused by ion-neutral collisions, there are no resonances
or cutoffs associated to the cyclotron frequencies, in contrast with the case of collisionless
fully ionized plasmas (see, e.g., Rahbarnia et al. [2010]). Hence, waves can propagate at any
frequency, although they are heavily damped at frequencies higher than ωH.

The simulations of waves excited by an impulsive driver have shown that, with the physical
conditions considered for a solar prominence and for a region in the lower chromosphere, there is
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a strong coupling between all the species that compose the plasma. Therefore, the perturbations
generated by an initial Gaussian profile propagate approximately at the modified Alfvén speed,
c̃A, which in the case of the lower chromosphere is two orders of magnitude smaller than the
classic Alfvén speed. This behavior agrees with the results obtained from the analysis of the
dispersion relation. The simulations also reflect that the friction force caused by collisions
dissipates a fraction of the kinetic energy of the initial perturbation and transforms it into
internal energy, which implies an increment of the temperature of the plasma. However, this
heating is a nonlinear effect and, due to the small amplitude of the perturbations investigated
in this chapter, the temperature rise obtained is negligible compared to the background value.
The study of the heating caused by large-amplitude perturbations will be performed in the next
chapter.

Finally, the simulations of waves generated by a periodic driver have shown that as the
frequency of the driver in increased, the different species begin to decouple. Neutral species only
remain strongly coupled to the ions at low frequencies. In the high-frequency limit, the plasma
behaves almost as if it were composed of the ionized species only, with minimal influence from
the neutral components. In addition, it has been checked the prediction from the dispersion
relation that, in the weakly ionized environment of the lower solar chromosphere, the L mode is
strongly overdamped if ω > ωH: the kinetic energy of the perturbation is completely dissipated
in a few hundreds of meters.
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Chapter 5

Nonlinear perturbations

5.1 Introduction

The previous chapters have focused on the study of small-amplitude Alfvénic waves in the
solar atmosphere. However, as already commented in the introduction of this Thesis, large-
amplitude perturbations, whose velocity amplitudes are not negligible in comparison with the
Alfvén speed, have also been detected. In the present chapter, the study of the effects of the
collisional interactions between the different species in multi-component plasmas is extended
by incorporating the nonlinear effects that arise when large-amplitude perturbations are con-
sidered.

The study of nonlinear waves is more complex than that of their linear counterpart and
it is typically performed by means of numerical simulations [see, e,g., Murawski and Roberts,
1993, Oliver et al., 1998]. Some more recent numerical results can be found in Matsumoto and
Shibata [2010], who studied Alfvén waves driven by photospheric motions, Suzuki [2011], who
investigated solar and stellar winds driven by Alfvén waves, or Karpen et al. [2017], whose
results suggest that coronal-hole jets are a possible origin for nonlinear Alfvén waves in the
interplanetary medium.

Nevertheless, analytical results can also be obtained if certain approximations are taken. A
common analytical procedure is to assume a perturbative expansion, where the variables that
describe the properties of the plasma are expressed as a sum of a background value plus a
series of terms that represent the linear and higher-order perturbations. The series is truncated
at some given order and systems of equations are derived for the chosen perturbations, while
higher-order effects are neglected. This procedure was followed, e.g., by Hollweg [1971], who
studied second-order effects of Alfvén waves, or by Rankin et al. [1994], Tikhonchuk et al. [1995]
and Verwichte et al. [1999], who examined the properties of up to third-order perturbations.
Those works have shown that nonlinear Alfvén waves induce a ponderomotive force that causes
variations in the density and pressure of the plasma, in contrast with the incompressibility of
linear Alfvén waves. In addition, third-order effects also produce a steepening of the wave and
the generation of higher harmonics.

Other examples of works in the field of nonlinear MHD waves are listed next. For instance,
Roberts et al. [1983] investigated their influence on the generation of short period radio pul-
sations from the solar corona, Ofman and Davila [1995] studied the nonlinear evolution of
resonant absorption of Alfvén waves, and Boynton and Torkelsson [1996] examined the effect of
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gravitational stratification. Moreover, nonlinear magnetoacoustic waves were analyzed by, e.g.,
Murawski et al. [2001] and Vranjes and Pandey [2013]. Terradas and Ofman [2004] studied
the density enhancements by MHD waves in coronal loops, Terradas et al. [2008a] analyzed
nonlinear kink oscillations in magnetic flux tubes and the properties of Alfvén-cyclotron waves
in multi-ion plasmas were investigated by Marsch and Verscharen [2011].

In most of the works mentioned in the previous paragraphs the plasma is considered to be
fully ionized and treated as a single-fluid. The assumption of fully ionization is valid for the
solar corona and the solar wind, where the presence of neutral particles is negligible. However,
it is not applicable to other regions of the solar atmosphere, such as the chromosphere, or to
structures like prominences, in which neutrals are the dominant component of the plasma and
have a dramatic effect on the properties of MHD waves (see, e.g., Piddington [1956], Watanabe
[1961b], Haerendel [1992], Soler et al. [2013a]). In addition, as shown in Chapters 3 and 4, the
use of single-fluid models is only appropriate when the phenomena of interest is associated with
low frequencies, i.e., much lower than the ion cyclotron frequencies in fully ionized plasmas
or the ion-neutral collisions frequencies in partially ionized plasmas. Conversely, at higher
frequencies, multi-fluid approaches are required due to the fact that the components of the
plasma are not strongly coupled and they react to perturbations in different timescales.

In the present chapter, the multi-fluid model described in Chapter 2 is applied to the
investigation of nonlinear waves in partially ionized plasmas, paying special attention to the
heating due to ion-neutral collisions. The issue of heating is of great interest for the solar
atmosphere (see, e.g., Goodman [2011], Parnell and De Moortel [2012], Song and Vasyliūnas
[2011], Khomenko and Collados [2012], Tu and Song [2013], Gilbert [2015], Heinzel [2015], Arber
et al. [2016], Soler et al. [2016]). It has been shown that Alfvénic waves can transport a huge
amount of energy from the photosphere to higher layers of the solar atmosphere (Tomczyk et al.
[2007], McIntosh et al. [2011], Srivastava et al. [2017]). However, it remains unclear whether all
the energy carried by the waves is deposited in the plasma. A dissipative mechanism is required
to transform that energy into heat and, in the case of partially ionized plasma, the ion-neutral
collisional interaction is one of the possible mechanisms. The topic of heating by means of
ion-neutral collisions was briefly examined in Chapter 4 when small-amplitude perturbations
were studied. However, since heating is a nonlinear effect with a quadratic dependence on the
velocity drifts, as shown by Equation (2.57), it is expected to have a more relevant role when
large-amplitude waves are considered.

This chapter is organized as follows. In Section 5.2, the effect of partial ionization on
nonlinear standing waves is investigated: numerical simulations are performed for the case of a
plasma with prominence conditions, and analytical results are derived for the case of a two-fluid
plasma. In Section 5.3, large-amplitude impulsive perturbations are considered and the heating
due to ion-neutral collisions is examined. Finally, Section 5.4 summarizes the results.

5.2 Nonlinear standing waves

In this section, nonlinear standing waves in a uniform and static partially ionized plasma are
analyzed. The temporal evolution is governed by the equations detailed in Section 2.2. Due
to the complexity of the equations, 1.5D numerical simulations with the MolMHD code are
performed.

Figure 5.1 shows the results of a simulation in a plasma with conditions that correspond
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to a quiescent prominence core at an altitude of 10, 000 km over the photosphere and with gas
pressure of Pg = 0.005 Pa, according to Heinzel et al. [2015]. The physical parameters used
in this simulation are given in Tables 4.1 and 4.2. A uniform background magnetic field, B0,
along the x-direction is considered. A typical value of the magnetic field strength in quiescent
prominences is B0 = 10 G. The fundamental standing mode of the transverse Alfvén waves is
excited by applying the initial perturbation

Vs,y(x, t = 0) = Vy,0 cos(kxx) (5.1)

to every species s of the plasma, where Vs,y is the y-component of the velocity and kx is the
longitudinal wavenumber. No initial perturbation is applied to the other variables. The domain
of the simulation is x ∈ [−l, l], with l = 2.5×105 m. For the fundamental mode, the wavenumber
is kx = π/(2l) and the boundary conditions impose that the three components of the velocity
are equal to zero at x = ±l. The amplitude of the perturbation is given by Vy,0 = 2.5×10−2cA,
where cA = |B0|/√µ0ρp is the Alfvén speed, with µ0 the vacuum magnetic permeability. Note
that the present definition of Alfvén speed only takes into account the density of ions. For
the parameters given above, the Alfvén speed is cA ≈ 184 km s−1. The wavenumber of the
perturbation is given by kx = π/(5 × 105) m−1.

The top row of Figure 5.1 shows several time steps of the evolution of the perturbation, which
is perpendicular to the background magnetic field. Initially, the three species of the plasma
have the same velocity but, since the coupling between them is not perfect, some small velocity
drifts appear when the Alfvén wave starts its oscillation. As time advances, the collisional
friction causes the damping of the wave, as is better illustrated by the top left panel of Figure
5.2. This is the same behavior as the one already explained in Chapter 4 for small-amplitude
waves. Nevertheless, due to the much larger amplitude of the perturbation used in the present
investigation, the nonlinearities are not negligible and, in contrast, perturbations along the
direction of the background magnetic field are also excited. Thus, the second row of Figure 5.1
displays the x-component of the velocity, normalized with respect to the amplitude of the driver,
Vy,0, at various time steps. Apart from the smaller amplitude of Vx in comparison with Vy, the
main difference is that its wavenumber is twice the wavenumber of the initial perturbation
and there is a spatial phase shift: while Vy is proportional to cos(kxx), Vx is proportional to
sin(2kxx). Furthermore, the right top panel of Figure 5.2 shows that the oscillation in Vx does
not attenuate as fast as the oscillation in Vy.

The third and bottom rows of Figure 5.1 show the relative variation of density, defined
as the ratio between the perturbation in density and its background value, i.e., ∆ρ/ρ0, with
∆ρ ≡ ρ(x, t) − ρ0, and the ratio between the perturbation of temperature and the initial
temperature, ∆T/T0, with ∆T ≡ T (x, t)−T0, respectively. These two variables are proportional
to cos(2kxx). The relative variation of density shows that matter accumulates at the center of
the domain and is displaced from the ends during the first steps of the simulation but later
this process is inverted and a oscillation appears. The amplitude of this variation of density
is around 2% of the initial background value. Finally, the bottom panels show that the mean
temperature of the plasma rises as time advances. The main reason for this increment is the
dissipation of the kinetic energy of the initial perturbation which is transformed into heat by
means of ion-neutral collisions.

More details of the simulation can be analyzed by inspecting Figure 5.2, where the temporal
evolution of the same variables displayed in Figure 5.1 at selected representative points of the
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Figure 5.1: Results of a simulation of the fundamental standing mode of the Alfvén waves of
initial amplitude Vy,0 = 2.5 × 10−2cA with kx = π/(5 × 105) m−1 in a medium with np = 1.4 ×
1016 m−3, nH = 2×1016 m−3 and nHe = 2×1015 m−3. The magnetic field is B0 = Bx = 10 G and
the initial temperature is T0 = 104 K. From top to bottom: normalized y- and x-components
of the velocity, relative variation of density and relative variation of temperature. The red
solid lines, blue crosses and dotted-dashed green lines represent protons, neutral hydrogen and
neutral helium, respectively. The horizontal dotted line in the bottom panels represents the
spatially-averaged value of ∆T/T0. (An animation of this figure is available.)
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Figure 5.2: Temporal evolution of Vy at x = 0 (top left), Vx at x = −l/2 (top right), the
relative variation of density at x = 0 (bottom left) and ∆T/T0 at x = 0 (bottom right) from
the simulation shown in Figure 5.1.

domain is plotted. The representative point for Vx is different from the position chosen for the
rest of variables because x = 0 is a node for this component of the velocity. Hence, a better
location to analyze Vx is x = −l/2.

By fitting the oscillation displayed in Figure 5.2(a) with an exponentially decaying sinusoidal
of frequency ω, we find that ω ≈ 0.67 rad s−1 (which corresponds to a period of 9.4 s). This
frequency agrees well with the result obtained by solving the dispersion relation derived in
Chapter 3 for linear perturbations, namely Equation (3.12). If the collision frequencies between
the different fluids is compared with the oscillation frequency divided by 2π (rigorously speaking,
the collision and the oscillation frequencies cannot be compared directly because they are
expressed in different units), it is found that ω/(2π) < νst. This fact explains why the three
species oscillate with almost the same velocity but there is still some damping due to friction.

The top right panel of Figure 5.2 shows a wave in the x-component of the velocity that
seems to be composed of at least two different oscillation modes. The motion in this direction
is dominated by a mode that oscillates with a frequency much lower than the frequency of the
oscillation of the Vy component and is weakly damped. The analysis of the oscillation reveals
that the frequencies of those two modes are ω1 ≈ 0.16 rad s−1 and ω2 ≈ 1.34 rad s−1. We show
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later that these frequencies are related to the weighted mean sound speed of the whole fluid
and the Alfvén speed (modified by the inclusion of the density of neutrals), respectively.

Panel (c) of Figure 5.2 shows the temporal evolution of ∆ρ/ρ0 at x = 0. It can be seen that at
the central point of the simulation domain the density rises during the initial seconds, it reaches
a maximum and then the fluctuation can be described as the composition of an oscillation and
a linear decrease with time. It can be checked that the frequency of the oscillation coincides
with that of the dominant mode of the wave in Vx and that there is a slight temporal phase shift
between ∆ρ/ρ0 and Vx. Finally, panel (d) shows a growing trend of the temperature at x = 0,
combined with an oscillation similar to that found in the density. This increase of temperature
is a consequence of the friction due to ion-neutral collisions. A fraction of the energy of the
Alfvén wave is transformed into heat and, thus, the internal energy of the plasma grows.

Figure 5.3: Same as Figure 5.2 but for kx = π/(5 × 103) m.

The previous results have been obtained for a case with a strong coupling between the
three fluids of the plasma. It is interesting to repeat the simulations but when the interaction
between fluids is weaker. This can be achieved by considering a wave with ω/(2π) > νpHe. To
that goal, we perform a simulation with a larger wavenumber, kx = π/(5 × 103) m−1. The
dispersion relation predicts a frequency ω ≈ 75.14 rad s−1 for the Alfvén wave, which is higher
than 2πνpHe and 2πνHHe, but lower than 2πνpH. The results of this simulation are displayed
in Figure 5.3. Remarkable differences with respect to the previous case can be found. Now,
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the ratio between the damping rate and the oscillation frequency is much larger than in Figure
5.2 and the Alfvén wave dissipates after few periods. Moreover, neutral helium is found to be
decoupled from the other species. In contrast with the previous case, panel (b) shows that the
wave in the x-component of velocity is more attenuated with time and, in addition, only one
oscillation mode can be clearly noticed instead of the two modes present in the first simulation.
Some hints of the second mode may be found during the first instants of the motion but it
disappears fast. Again, it is evident that neutral helium is not as strongly coupled to protons
and neutral hydrogen as before. The decoupling of neutral helium from the rest of species is a
purely multi-fluid effect.

Figure 5.3(c) shows that the density only increases at the center of the domain during a
very short time. Then, the relative variation of density becomes negative and oscillates about
∆ρ/ρ0 ≈ −0.02. Hence, the net result of this nonlinear effect is that matter is displaced from
the central part of the domain and directed towards the ends. This behavior may be related to
the increase of the fluid pressure which is associated with the initial fast grow of temperature
shown in panel (d). The quick rise of temperature and pressure is caused by the fast dissipation
of the Alfvén wave due the collisional friction. This issue is addressed with more detail later. It
is also remarkable that during the first steps of the simulation, neutral helium reaches a larger
temperature than the other two fluids and then tends to a thermal equilibrium with them. This
is all caused by collisions, which tend to equalize the temperatures of all species in a timescale
of the order of the collision frequency.

To gain a better understanding of the nonlinear effects presented up to this point, it would
be useful to derive some analytical expressions from the multi-fluid equations. However, a
three-fluid system is quite complex for this goal and it would be difficult to extract some clear
conclusions. A simpler scenario that can be investigated analytically is the case of partially
ionized plasmas composed of only two distinct fluids. Such analysis is described in the following
section.

5.2.1 Nonlinear waves in a partially ionized two-fluid plasma

Here, a partially ionized two-fluid plasma is considered as a simpler, toy model that can help us
to understand the numerical results given in the previous section. One of the fluids is composed
of ions and electrons, and the other one is composed of neutrals. For the sake of simplicity,
Hall’s term and Ohm’s diffusion are neglected from the induction equation. Therefore, the
equations that describe the dynamics of this plasma are a simplified version of those used in
the previous simulations, namely

∂ρi

∂t
+ ∇ · (ρiVi) = 0, (5.2)

∂ρn

∂t
+ ∇ · (ρnVn) = 0, (5.3)

∂ (ρiVi)

∂t
+ ∇ · (ρiViVi) = −∇Pie +

∇× B

µ0
× B + αin (Vn − Vi) , (5.4)

∂ (ρnVn)

∂t
+ ∇ · (ρnVnVn) = −∇Pn + αin (Vi − Vn) (5.5)
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and
∂B

∂t
= ∇× (Vi × B) , (5.6)

where Pn is the pressure of neutrals, Pie is the sum of the pressures of ions and electrons and
αin is the ion-neutral friction coefficient.

To study the properties of non-linear perturbations, a perturbative expansion is performed.
Thus, each variable, f , in the previous system of equations is rewritten as follows:

f = f (0) + ǫf (1) + ǫ2f (2) + . . . , (5.7)

where ǫ is a dimensionless parameter proportional to the velocity amplitude of Alfvén waves,
the superscript “(0)” refers to the background values and the superscripts “(1)” and “(2)” cor-
respond to the first-order and second-order perturbations, respectively. Since a static uniform
background is considered, V

(0)
i = V

(0)
n = 0 and the remaining background values are constant.

Then, the terms in Equations (5.2)-(5.6) can be gathered according to their powers of ǫ, and
separated systems of equations can be obtained for each order of the perturbative expansion.

If the initial perturbations are chosen to be transverse to the direction of the background
magnetic field (assumed here to be in the x-direction) and let to propagate along that same
direction, the first-order (or linear) system leads to the equation for Alfvén waves,

[
∂3

∂t3
+ (1 + χ) νni

∂2

∂t2
− c2

A

∂

∂t

∂2

∂x2
− c2

Aνni
∂2

∂x2

]
V

(1)
i,⊥ = 0, (5.8)

where χ = ρn/ρi is the ionization ratio, νni = αin/ρn is the neutral-ion collision frequency, and

V
(1)

i,⊥ ≡ V
(1)
i,y ̂ + V

(1)
i,z k̂ is the perturbation of the velocity of ions in the perpendicular direction.

After solving this equation, the first-order perturbation of magnetic field can be found through
the equation

∂B
(1)
⊥

∂t
= B0

∂V
(1)

i,⊥

∂x
, (5.9)

where B0 ≡ B
(0)
x is the background magnetic field and B

(1)
⊥ ≡ B

(1)
y ̂ + B

(1)
z k̂.

The solutions of Equation (5.8) in the form of normal or Fourier modes have been analyzed
in the past by, e.g., Piddington [1956], Kulsrud and Pearce [1969], Pudritz [1990], Martin
et al. [1997] or Kamaya and Nishi [1998], and more recently by Kumar and Roberts [2003],
Zaqarashvili et al. [2011a], Mouschovias et al. [2011] or Soler et al. [2013b]. At first order, there
is no coupling between the perpendicular and longitudinal components of the perturbations,
which means that there is no coupling between Alfvén and sound waves. In contrast, a coupling
appears at the second-order, as shown by the following equations, which are related to the
velocities in the longitudinal direction:

∂ρ
(2)
n

∂t
+ ρ(0)

n

∂V
(2)

n,x

∂x
= 0, (5.10)

∂ρ
(2)
i

∂t
+ ρ

(0)
i

∂V
(2)

i,x

∂x
= 0, (5.11)

ρ(0)
n

∂V
(2)

n,x

∂t
= −∂P

(2)
n

∂x
+ αin

(
V

(2)
i,x − V (2)

n,x

)
, (5.12)
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ρ
(0)
i

∂V
(2)

i,x

∂t
= −∂P

(2)
ie

∂x
− ∂

∂x

(
B2

⊥

2µ0

)
+ αin

(
V (2)

n,x − V
(2)
i,x

)
, (5.13)

where B2
⊥ ≡

(
B

(1)
y

)2

+
(
B

(1)
z

)2

. Thus, the second-order perturbation of the velocity of ions is

related to the first-order perturbation of the magnetic field and, in turn, produces a fluctuation
in the rest of the variables, namely V

(2)
n,x , ρ

(2)
i , and ρ

(2)
n . It must be noted that the second-

order equations corresponding to the perpendicular components have the same form as those
of first-order and hence, they describe the same behavior as Equations (5.8) and (5.9).

The sound speeds of the ionized and of the the neutral fluids are defined as cie =

√
γP

(0)
ie /ρ

(0)
i

and cS,n =

√
γP

(0)
n /ρ

(0)
n , respectively. In the fully ionized single-fluid case, the second-order

perturbations of pressure and density are related by the expression P
(2)
ie = c2

ieρ
(2)
i (see, e.g,

Hollweg [1971], Rankin et al. [1994]). When multi-fluid plasmas are considered, that relation is
not accurate because of the heat transfer terms in the evolution equation of pressure (see Equa-
tion (2.54)). Nevertheless, for the purposes of this analytical study, it can be taken as a good

approximation. Thus, assuming that P
(2)
n ≈ c2

S,nρ
(2)
n and combining Equations (5.10)-(5.13), it

is possible to obtain the following equation that describes the second-order perturbations of
the density of ions (a similar equation can be cast for neutrals and for the x-component of the
velocities of ions and neutrals):

[
∂4

∂t4
+ (νin + νni)

∂3

∂t3
−
(
c2
S,n + c2

ie

) ∂2

∂t2
∂2

∂x2
−
(
νinc

2
S,n + νnic

2
ie

) ∂

∂t

∂2

∂x2
+ c2

iec
2
S,n

∂4

∂x4

]
ρ

(2)
i =

(
∂2

∂t2
∂2

∂x2
− c2

S,n

∂4

∂x4
+ νni

∂

∂t

∂2

∂x2

)(
B2

⊥

2µ0

)
. (5.14)

An interesting limiting case of the previous equation can be found if νni is assumed to
tend to infinity, which corresponds to a strong coupling between the two fluids. The following
expression is obtained:

[
(1 + χ)

∂3

∂t3
−
(
χc2

S,n + c2
ie

) ∂

∂t

∂2

∂x2

]
ρ

(2)
i =

∂

∂t

∂2

∂x2

(
B2

⊥

2µ0

)
, (5.15)

where the relation νin/νni = χ has been used. The integration with respect to time leads to

[
∂2

∂t2
−
(

c2
ie + χc2

S,n

1 + χ

)
∂2

∂x2

]
ρ

(2)
i =

∂2

∂x2

(
B2

⊥

2µ0(1 + χ)

)
, (5.16)

where an integration constant has been taken equal to zero. This is the 1-dimensional inho-
mogeneous wave equation, with the right-hand representing a driving term. Using the initial
conditions ρ

(2)
i (x, t = 0) = 0 and ∂

∂t
ρ

(2)
i (x, t = 0) = 0, respectively, the solution to this equation

can be computed as

ρ
(2)
i (x, t) =

1

2c̃S

∫ t

0

∫ x+ecS(t−τ)

x−ecS(t−τ)

∂2

∂x2

[
B2

⊥(ξ, τ)

2µ0(1 + χ)

]
dξdτ. (5.17)
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The only speed that explicitly appears in Equation (5.17) is the effective sound speed, c̃S,
defined as

c̃S =

(
c2
ie + χc2

S,n

1 + χ

)1/2

. (5.18)

However, since the driving wave is assumed to be Alfvénic, the evolution of B2
⊥ depends on the

Alfvén speed. Hence, the evolution of ρ
(2)
i (x, t) depends on both sound and Alfvén speeds.

From Equation (5.14) it is also possible to recover the differential equation that describes
the second-order perturbations of density in a fully ionized plasma. If the collision frequencies
are taken equal to zero (meaning that neutrals are decoupled and do not interact with ions), it
is possible to rewrite Equation (5.14) as

(
∂2

∂x2
− c2

S,n

∂2

∂x2

)(
∂2

∂x2
− c2

ie

∂2

∂x2

)
ρ

(2)
i =

(
∂2

∂x2
− c2

S,n

∂2

∂x2

)
∂2

∂x2

(
B2

⊥

2µ0

)
, (5.19)

which leads to (
∂2

∂t2
− c2

ie

∂2

∂x2

)
ρ

(2)
i =

∂2

∂x2

(
B2

⊥

2µ0

)
, (5.20)

an equation that has already been derived by Hollweg [1971], Tikhonchuk et al. [1995] or
Terradas and Ofman [2004]. It can be seen that Equations (5.16) and (5.20) represent the same
type of behavior, with differences appearing in the velocity of propagation of waves and the
amplitude of the driving term. These are two effects caused by the ion-neutral interaction.

If the initial perturbation applied to the equilibrium state is given by

V (1)
y (x, t) = Vy,0 cos(kxx), (5.21)

and the strongly coupled limit is applied to Equations (5.8) and (5.9), the first-order perturba-
tion of the magnetic field is

B⊥(x, t) =
−B0

c̃A
Vy,0 sin(c̃Akxt) sin(kxx), (5.22)

with c̃A the Alfvén speed modified by the inclusion of the inertia of neutrals, i.e., c̃A =
B0/

√
µ0ρi,0(1 + χ). Then, the solution to Equation (5.16) is

ρ
(2)
i (x, t) =

B2
0V

2
y,0 [c̃2

A − c̄2
S + c̄2

S cos(2c̃Akxt) − c̃2
A cos(2c̄Skxt)] cos(2kxx)

8c̃2
Ac̄2

S(c̃2
A − c̄2

S)µ0(1 + χ)
. (5.23)

The resulting perturbation is the combination of two standing modes with frequencies 2c̃Akx

and 2c̃Skx, respectively, and whose wavenumber is twice the wavenumber of the original per-
turbation. The solution for the fully ionized case is recovered by substituting c̃S with cie, c̃A

with cA and taking χ = 0.
If the sound speed is much lower than the Alfvén speed, as it occurs in the simulations

performed in this work, Equation (5.23) can be approximated as

ρ
(2)
i (x, t) ≈

B2
0V

2
y,0

8µ0c̃
2
A(1 + χ)

[
1 − cos(2c̃Skxt)

c̃2
S

]
cos(2kxx), (5.24)
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which shows that the perturbation is dominated by the oscillation mode associated with the
weighted sound speed.

Then, the relative variation of density, which in Figures 5.1-5.3 is represented as ∆ρ/ρ0, can
be computed as the ratio between the second-order perturbation and the background density.
Hence,

∆ρi

ρi,0
≡ ρ

(2)
i (x, t)

ρi,0
≈

V 2
y,0

8c̃2
S

[1 − cos(2c̃Skxt)] cos(2kxx), (5.25)

An interesting conclusion can be extracted from the previous equation: since the relative varia-
tion of density is proportional to V 2

y,0/c̃
2
S for partially ionized plasmas while it is proportional to

V 2
y,0/c

2
ie for fully ionized fluids and cie > c̃S, the relative variation of density is larger when the

effect of partial ionization is taken into account. This is an important result caused by partial
ionization.

A comparison between the fully ionized case and the partially ionized case with strong
coupling is shown in Figure 5.4. Numerical simulations with the same total mass, with np = nH

(i.e., χ = 1) for the partially ionized plasma, and the same amplitude of the initial perturbation
in velocity have been performed. The collision frequency for the partially ionized case is much
larger than the oscillation frequency. It can be seen that the amplitude of the relative variation
of density is larger when the plasma is partially ionized. Furthermore, the fully ionized plasma
oscillates with a slightly higher frequency than the partially ionized one, as it would be expected
since cie > c̃S. The numerical results are in almost perfect agreement with the approximate
analytical expressions. The small differences that appear in the partially ionized case are caused
by the collisional friction between ions and neutrals. This friction causes the damping of the
amplitude of the oscillation and a slight modification of its frequency. For simplicity, damping
has not been taken into account in the analytic approximations given above.

Figure 5.4: Relative variation of density caused by the ponderomotive force due to an Alfvén
wave with kx = π/104 m−1 in a fully ionized plasma (left) and a partially ionized plasma with a
strong coupling between the two fluids (right). The solid lines represent the analytical solution
given by Equation (5.25) and the red symbols represent the results of the numerical simulations.

If the wavenumber of the perturbation increases, the frequency of the Alfvén wave increases
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as well and departs from the limit where ω/(2π) ≪ νni, which means that the coupling between
the two fluids is not as strong as for smaller wavenumbers. Hence, it would be expected that
Equation (5.25) becomes inaccurate at larger wavenumbers. Moreover, it has been shown in
Chapters 3 and 4 that Hall’s term should be taken into account in the large wavenumber
range. However, such term has been neglected here in the derivation of the equations for the
second-order perturbations.

The three-fluid simulations represented in Figures 5.2 and 5.3 show that, under the chosen
physical parameters, the friction due to ion-neutral collisions is more efficient in attenuating the
Alfvénic waves than the acoustic modes. For instance, it can be checked that in Figure 5.3 the
first-order Alfvén wave has almost disappeared after t = 0.5 s, but the second-order perturbation
in the x-component of the velocity lasts for a longer time. In a two-fluid plasma, the oscillation
frequency and damping rate of the remaining second-order wave may be obtained from Equation
(5.14) in the following way. Since the driving wave, i.e., the first-order Alfvén wave, vanishes
due to collisions, after a given time the term on the right-hand side of Equation (5.14) becomes
equal to zero. Then, the remaining oscillations are governed by the homogeneous version of the
differential equation, with the initial conditions given by the wave previously induced by the
driver. After the primary Alfvén wave is completely damped, the second-order perturbation of
the density of ions can be expressed as

ρ
(2)
i ∼ exp [i(−ωt + κx)] , (5.26)

where, in this case, the wavenumber is twice the wavenumber of the original driving wave, i.e.,
κ = 2kx. This procedure leads to the following dispersion relation,

ω4 + i (νni + νin)ω3 − κ2
(
c2
S,n + c2

ie

)
ω2 − iκ2

(
νinc

2
S,n + νnic

2
ie

)
ω + c2

iec
2
S,nκ

4 = 0, (5.27)

which depends on the sound speeds but not on the Alfvén speed. This is the same dispersion
relation that would be obtained for linear acoustic waves in a two-species fluid in which only
the collisional interaction between ions and neutrals is taken into account and the influence of
magnetic fields is neglected (see, e.g., Vranjes and Poedts [2010]). It coincides with Equation
(9) from Vranjes and Poedts [2010] if the factors proportional to the electron-neutral collision
frequency of that formula are neglected, and it can also be recovered from Equation (47) of Soler
et al. [2013a], where magnetoacoustic waves in partially ionized plasmas have been studied, if
the Alfvén speed is set equal to zero.

It must be noted that for a certain range of collision frequencies, the driving wave may last
more than the acoustic wave and, strictly, the dispersion relation, Equation (5.27) should not be
applicable because the driver is still working. This is a consequence of the damping due to ion-
neutral collisions being most efficient when the oscillation frequency is similar to the collision
frequency (Zaqarashvili et al. [2011a], Soler et al. [2013b]). Since c̃S ≪ c̃A, the acoustic modes
are more damped than the Alfvénic ones at low collision frequencies and the opposite would
occur at high frequencies. Nevertheless, as shown by Equations (5.23) and (5.24), if the Alfvén
speed is much larger than the sound speed, the second-order oscillation is dominated by the
acoustic mode. Hence, the results from Equation (5.27) are still good approximations at any
range of collision frequencies. This statement can be checked by inspecting Figure 5.5, which
illustrates a study of the dependence of the oscillation frequency, ωR, and the damping rate, ωI ,
of the second-order acoustic wave on the ion-neutral collision frequency (only the modes with
ωR ≥ 0 are displayed). According to the dispersion relation, at low values of νin/ωS (where
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ωS = κc̃S is a normalization parameter), the Alfvén wave induces four acoustic modes with
ωR = ±κcS,n and ωR = ±κcie, respectively. At higher collision frequencies, two of those modes
tend to ωR = ±κc̃S, while the other two become evanescent, i.e., they have ωR = 0 and do not
oscillate. In addition, the damping of the oscillatory modes is larger at the intermediate range
of collision frequencies. The results from the simulation show a general good agreement with
the predictions from Equation (5.27). In addition, the behavior represented by this figure is
analog to that shown in Figures 4(c)-(d) of Soler et al. [2013a] for the modes denoted as slow,
acoustic and modified slow.

Figure 5.5: Oscillation frequency (left) and damping rate (right) of the second-order acoustic
mode generated by the Alfvén wave in a two-fluid plasma as functions of the collision frequency.
The normalization constant is ωS = κc̃S. The lines correspond to the solutions from Equation
(5.27) while the symbols represented the results from the simulations. At low νin/ωS, the blue
diamonds and the solid lines represent the mode associated with neutrals, and the red stars
and dashed lines represents the mode associated with ions. At large collision frequencies, the
green dotted lines correspond to an evanescent mode.

5.2.2 Ponderomotive force

After the simplified two-fluid model has helped us to understand some of the results of the
numerical simulations, we return back to the three-fluid model with the complete induction
equation and consider again conditions akin to those of solar prominences.

A series of simulations has been performed to investigate the dependence of the ponderomo-
tive force on the wavenumber. The same number densities, magnetic fields and temperatures as
those employed to obtain the results displayed in Figure 5.1 have been used here. The results
of this study are represented in Figure 5.6, where the normalized oscillation frequency of waves,
ωR/ωA, is plotted as a function of the wavenumber kx.

The black lines on the left panel of Figure 5.6 correspond to the predictions of the dispersion
relation given by Equation (3.12) for the Alfvénic modes when applied to the case of partially
ionized plasmas, as shown in Chapter 4. It must be noted that the dispersion relation has
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been obtained for small-amplitude perturbations but it can be also applied to the first-order
perturbations of the nonlinear case. The solutions of the dispersion relation shown in this figure
are the same as those represented in the top panel of Figure 4.2: the solid line corresponds to
the R-mode and the dashed line represents the L-mode. For the sake of simplicity, we refer
readers to Chapter 4 for detailed explanations of the differences between these two solutions.
The symbols represent the results of the numerical simulations. It can be seen that the simula-
tions are in perfect agreement with the predictions of the dispersion relation for the first-order
perturbations. Hence, the discussion already given in Chapter 4 can be directly applied to
these results and it is not necessary to repeat it here. Consequently, the focus is put on the
second-order perturbations.

Figure 5.6: Dependence of the normalized frequency, ωR/ωA, of the Alfvénic first-order per-
turbations (left) and the second-order acoustic modes (right) on the wavenumber. Black lines
represent the solutions of the dispersion relation for linear Alfvénic waves, with the solid and
dashed lines corresponding to the R and L modes, respectively. The solid red line on the right
panel represents the frequency of the second-order acoustic mode given by Equation (5.25),
i.e., ω(2) = 2c̃Skx. The green dotted-dashed line, the blue dashed line and the dotted red line
represent the frequencies 2cS,Hekx, 2cS,Hkx and 2ciekx, respectively. The symbols are the results
from the numerical simulations: red diamonds for protons, blue stars for neutral hydrogen, and
green circles for neutral helium.

According to the simulations, the frequency of the second-order acoustic modes, which is
denoted by ω

(2)
sim, has three clearly different regimes depending on the wavenumber of the first-

order perturbation. At small wavenumbers, the frequency given by the simulations is in very
good agreement with that predicted by Equation (5.25), i.e., ω

(2)
sim ≈ 2c̃Skx, with c̃S now given

by

c̃2
S =

∑
t ρtc

2
S,t∑

t ρt
, (5.28)

where cS,t =
√

γPt,0/ρt,0 is the sound speed of species t. However, as kx is increased, ω
(2)
sim

departs from that value. To understand this behavior, it is necessary to remind the collision
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Figure 5.7: Power spectrum of the oscillations in Vx for three different wavenumbers of the
initial perturbation: kx = π/(5×105) m−1 (left), kx = π/500 m−1 (middle) and kx = π/10 m−1

(right). The red solid lines, blue dashed lines and green dotted-dashed correspond to protons,
neutral hydrogen and neutral helium, respectively.

frequencies between the three fluids (protons, neutral hydrogen and neutral helium) that com-
pose the partially ionized plasma: νpH = 270 Hz, νpHe = 3.5 Hz, and νHHe = 5.2 Hz. Hence,

the three regimes of ω
(2)
sim can be understood in terms of the coupling degree between the fluids

as follows. At small wavenumbers, the oscillation frequency of the first-order perturbation,
ω

(1)
sim, is lower than the collision frequencies. Thus, there is a considerably strong coupling be-

tween the three components of the plasma, they behave almost as a single fluid whose effective
sound speed is given by c̃S. The resulting acoustic mode has a normalized frequency given by
ω

(2)
sim/ωA = 2c̃Skx/ωA ≈ 0.14. At intermediate wavenumbers, ω

(1)
sim is larger than νpHe and νHHe,

but smaller than νpH, which means that neutral helium is weakly coupled to the other two fluids
but protons and neutral hydrogen still have a strong interaction. Consequently, the effective
sound speed is given by the weighted mean of those of protons and hydrogen, without the
contribution of neutral helium, and is slightly larger than c̃S. With this new sound speed, the
normalized oscillation frequency is ω

(2)
sim/ωA ≈ 0.15. Finally, at large wavenumbers, ω

(1)
sim ≫ νpH

and the coupling between protons and hydrogen is weak. The sound speed of the proton fluid
is cie and ω

(2)
sim/ωA ≈ 0.18, which corresponds approximately to the result expected for a fully

ionized plasma. The neutral hydrogen and neutral helium fluids oscillate with the normalized
frequencies 2kxcS,H/ωA ≈ 0.13 and 2kxcS,He ≈ 0.065, respectively.

On the right panel of Figure 5.6, the interval kx ∈ [10−3, 2× 10−2] m−1 does not show data
corresponding to the helium fluid. The reason is that, in such region of wavenumbers, the
oscillation of helium is composed of several modes and not only one. This can be checked in
Figure 5.7, where the power spectrum of the x-component of the velocities of the three fluids
has been represented for three different wavenumbers of the original perturbation. The left and
right panels, corresponding to the small and large limits of wavenumbers, demonstrate that the
oscillation of each fluid is dominated by only one normal mode. At intermediate wavenumbers,
protons and neutral hydrogen are still strongly coupled and their oscillations are governed by
the same mode. However, the coupling with helium is weaker and additional modes appear,
reflected in a noisier spectrum of rather difficult interpretation.

Apart from the acoustic oscillation mode, Equation (5.23) states that the second-order
perturbation of density is also composed of an Alfvénic mode. As already mentioned, when
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c̃S ≪ c̃A, with

c̃A =
cA√

1 +
∑

t χt

, (5.29)

where χt = ρt/ρp, the amplitude of the Alfvénic mode is much smaller than that of the acoustic
one. Nonetheless, it still can be detected in some of the simulations, although it has not been
represented in Figure 5.6 for the sake of clarity, and it is possible to check that it has a similar
behavior than the first-order Alfvénic modes: at small wavenumbers its frequency is associated
with the modified Alfvén speed; at larger wavenumbers it is related to the classical Alfvén
speed, cA, as in a fully ionized plasma.

Furthermore, the simulations represented in Figure 5.1-5.3 reveal another contrast between
the partially ionized and the fully ionized cases. In the latter, the ponderomotive force produces
an accumulation of matter around the nodes of the Alfvén wave magnetic field perturbation.
In a pressureless fluid, the accumulation continues without limit. However, when the effect of
the gas pressure is taken into account, the density at that node reaches a certain maximum
and starts to oscillate between that maximum and its background value (see, e.g., Rankin et al.
[1994], Tikhonchuk et al. [1995]). On the other hand, Figures 5.2 and 5.3 show that in partially
ionized plasmas, the density tends to accumulate at the node only for a brief period of time.
After, the relative variation of density, ∆ρ/ρ0, decreases and oscillates around negative values,
which means that the plasma becomes lighter at that point in comparison with the equilibrium
state. This behavior can be understood in terms of the effect of gas pressure and collisions as
follows.

According to Equation (5.13), the second-order longitudinal motion of ions mainly depends
on the balance between the forces given by the gradients of the thermodynamic and magnetic
pressures. The study of fully ionized plasmas (see, e.g., Rankin et al. [1994], Tikhonchuk et al.
[1995]) shows that the gradient of magnetic pressure moves the plasma towards the nodes of
the first-order magnetic field perturbation. The gradient of the second-order perturbation of
pressure acts in the opposite way, i.e., it displaces the matter from those locations. These
statements can be checked by computing the corresponding gradients using the expressions of
B⊥ and ρ

(2)
i (x, t) given by Equations (5.22) and (5.23), respectively, and assuming the relation

P
(2)
ie ≈ c2

ieρ
(2)
i . Which effect dominates during the first steps of the temporal evolution depends

on the time scales associated to them. Under the physical conditions used in this investigation,
the Alfvén frequency is higher than the frequency of sound waves, meaning that magnetic
pressure has a smaller time scale than the thermodynamic pressure. Therefore, in the first
place, the matter accumulates at the nodes. Later, the effect of the thermodynamic pressure
becomes noticeable and the resulting motion is a consequence of the combination of the two
forces. In partially ionized plasmas, friction due to ion-neutral collisions dissipates the energy of
Alfvén waves and turns it into internal energy of the plasma, i.e., it increases the thermodynamic
pressure. As time advances the term of the motion equation associated with the driving Alfvénic
wave becomes less relevant in comparison with the gradient of the thermodynamic pressure.
Consequently, the longitudinal motion is dominated by the force that moves the matter away
from the nodes of the magnetic field perturbation.

It must be noted that in this section the amplitude of the perturbations has been chosen in
a way that only first- and second-order effects are relevant for the dynamics of the investigated
plasmas. However, if the amplitudes are increased, higher-order terms may be also of great
importance. As detailed by Tikhonchuk et al. [1995], the higher-order terms may produce, for
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Figure 5.8: Comparison of the oscillations in the proton fluid generated by standing Alfvén
waves with different initial amplitudes: Vy,0 = 0.025cA (red solid lines), Vy,0 = 0.05cA (blue
dots), Vy,0 = 0.1cA (green dashes), and Vy,0 = 0.15cA (black thin lines). The wavenumber of
the initial perturbations is kx = π/(5 × 104) m−1 in all cases.

instance, the steepening of the fluctuations, which may lead to the formation of shocks, and
the appearance of higher harmonics of the Alfvén waves. Some of those higher-order effects can
be found in Figure 5.8, where the results of simulations with different amplitudes of the initial
perturbation are compared. The steepening of the waves when the amplitudes are increased
is clearly shown in panels (b) and (c), corresponding to the normalized x-component of the
velocity at the point x = −l/2 and the variation of density at x = 0, respectively. The top left
panel represents the first-order Alfvén wave at x = 0 and it can be seen that, after the initial
steps, its frequency raises in the cases with the larger amplitudes. This is due to the decrease
of density shown in panel (c). The change in frequency can also be noticed in the other three
panels: a larger number of periods can be found for Vy,0 = 0.15cA than for Vy,0 = 0.025cA.
Finally, panel (d) represents the variation of temperature at x = 0. After a very fast growth,
the temperature tends to oscillate around a value that increases with the square of the driver
amplitude, consistent with the dependence shown by the heating term given by Equation (2.57).

The results displayed in Figure 5.8(d) correspond to a specific point of the numerical domain.
Although they are representative of the general behavior of heating of the plasma, differences
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appear (for example, in amplitude and in the phase of the oscillations) when other points
are considered. Thus, it is interesting to compute the average value over the spatial domain.
The temporal evolution of the spatially-averaged temperature, given by 1/(2l)

∫ l

−l
T (x) dx, is

represented in Figure 5.9. Comparing this figure with Figure 5.8, it can be seen that the
temperature reaches an equilibrium value after most of the energy of the Alfvén wave has been
dissipated, while the contribution of the second-order acoustic waves to heating is negligible.
This is due to ion-neutral collisions being inefficient in damping the acoustic modes under the
parameters chosen for these simulations. When the amplitude of the initial perturbation is
Vy,0 = 0.025cA, the temperature rises up to ∼ 10, 360 K (i.e., the variation is ∆T ≈ 360 K).
For the amplitudes Vy,0 = 0.05cA, Vy,0 = 0.1cA and Vy,0 = 0.15cA, the final temperatures
are 11, 470 K (∆T ≈ 1470 K), 16, 170 K (∆T ≈ 6170 K), and 24470 K (∆T ≈ 14, 470 K),
respectively. Hence, the dependence of the increment of temperature on the amplitude of the
perturbation is approximately quadratic.

Figure 5.9: Spatially-averaged temperature variation in a plasma with prominence conditions
due to the dissipation of standing Alfvén waves with kx = π/(5 × 104) m−1 and amplitudes
Vy,0 = 0.025cA (red solide line), Vy,0 = 0.05cA (blue dotted line), Vy,0 = 0.1cA (green dashed
line), and Vy,0 = 0.15cA (black line).

The formation of shocks through the ponderomotive coupling of Alfvén waves to sound
modes was investigated by Arber et al. [2016]. Their 1.5D numerical study suggests that in
the chromosphere the heating due to shocks is larger than that caused directly by ion-neutral
collisions. Here, we have shown that shocks associated with the second-order sound waves may
develop in a quiescent prominence. Hence, shock heating may have an important contribution
to the total heating of partially ionized prominences. Nevertheless, the equations of our model
do not include the necessary terms to properly address the viscous heating due to shocks.

5.3 Numerical simulations of impulsive perturbations

In this section, the evolution of a velocity pulse as it propagates through a uniform partially
ionized plasma is analyzed. A similar study was performed by Verwichte et al. [1999] for
the case of fully ionized plasma. Hence, it is interesting to examine how the results of that
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work are modified by the inclusion of partial ionization effects. Moreover, according to Rankin
et al. [1994], the effects of nonlinearity are stronger for standing waves than for propagating
waves. Thus, third- or higher-order terms are only expected to have a strong impact on the
evolution of the pulse for larger amplitudes than those used in the previous section and the
main nonlinearities that appear in this section are due to the second-order terms. As before,
we consider 1.5D numerical simulations.

Now, the perturbation applied to the plasma at t = 0 has a Gaussian profile, i.e., it is given
by

f (1)(x, t = 0) ∼ exp

[
−
(

x − x0√
2σx

)2
]

, (5.30)

where σx is the root-mean-square width and is related to the full width at half maximum
(FWHM) of the Gaussian by the formula FWHM = 2

√
2 ln 2σx, and x0 is the central position

of the peak.
Figure 5.10 shows the Alfvén wave that is generated when the perturbation given by Equa-

tion (5.30) is applied to the y-component of the velocity of all species of a plasma with promi-
nence conditions (the same used in the previous section). The amplitude of the perturbation
is Vy,0 = 5 × 10−2cA and its width is FWHM = 2 × 105 m. As expected, the initial pulse
splits into two smaller Alfvénic pulses, with half the height of the initial pulse, and propagate
towards opposite directions. There is a strong coupling between the three species (protons,
neutral hydrogen and neutral helium) and the transverse velocity pulses of each fluid propagate
together at the modified Alfvén speed, c̃A. Notwithstanding, the height of the peaks decreases
with time because the coupling is not perfect and there is friction that dissipates a fraction of
the wave energy and turns it into internal energy of the plasma. Friction is caused by the small
velocity drifts between species, which are not noticeable at the scale of Figure 5.10.

Figure 5.10: Component y of the velocity of protons (red solid line), neutral hydrogen (blue
crosses), and neutral helium (green dotted-dashed line) from a simulation of a plasma with
prominence conditions. The initial Gaussian pulse has a FWHM = 2× 105 m. As a reference,
the vertical lines represent the position of a perturbation that would propagate with velocity
c̃A .

The nonlinear effects generated by the Alfvénic pulse are represented in Figure 5.11. The
panels in the top row display the perturbation on the x-component of the velocity. The ampli-
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tude of Vx is much smaller than that of Vy, of the order of 1.5% of Vy,0, as it would be expected.
As in the case of standing waves, two clearly different waves appear in the longitudinal com-
ponent of velocity. The faster one has a propagation speed that coincides with c̃A, while the
slower one propagates at the speed c̃S. The waves leave a small wake that is positive at x > 0
and negative at x < 0. This means that, after the wavefront has passed, the particles are slowly
moved away from the center. Again, this is a nonlinear effect.

The relative variation of density is shown in the second row of Figure 5.11. Although their
shapes are different, the perturbations found here have the same propagation speeds as those
for Vx. Moreover, a similar behavior to that previously described for standing waves can be
observed: matter accumulates at the center of the domain during the first steps of the simulation
but later is displaced from that point.

The third and fourth rows of Figure 5.11 represent the second-order perturbations of pressure
and temperature, respectively, with ∆P = P (x, t) − P0. These two rows show how a fraction
of the energy of the perturbation is deposited into the plasma. An increase of temperature
and pressure is found after the passing of the wave front, i.e., some of the energy of the wave
has been transformed into internal energy of the plasma. The increase of pressure seems to be
uniform along the plasma. In contrast, it can be checked that the growth of temperature is
inversely proportional to the variation of density.

The results shown in Figure 5.10 and the first and second columns of Figure 5.11 can be
compared with those in Figure 1 from Verwichte et al. [1999]. A similar behavior is found in
fully and partially ionized plasmas during the first steps of the evolution of the density and
velocity. The differences would appear in pressure and in temperature. Verwichte et al. [1999]
did not plot the evolution of the pressure because, for the case of fully ionized plasmas, it has
the same shape as that of density. In contrast, in partially ionized plasmas, the propagating
waves leave a pressure wake due to the frictional dissipation of energy because of ion-neutral
collisions, a phenomenon that is obviously absent from the fully ionized case of Verwichte et al.
[1999].

Not all the kinetic energy of the initial perturbation is used in heating the plasma, but
a fraction of it is inverted in generating the second-order propagating waves. Hence, it is
interesting to investigate how the efficiency of the energy deposition depends on the properties
of the initial perturbation. A series of simulations has been performed with different widths
of the Gaussian velocity pulse but keeping the same initial kinetic energy, i.e., the amplitude
of the pulse has been modified accordingly. The results of this study are displayed in Figure
5.12, where the data have been obtained in the following way: the domain of the simulation is
x ∈ [−4, 4] × 106 m but the analyzed energies have been computed for a smaller region, given
by x ∈ [l1, l1], where l1 = 106 m; the reason to do so is that the background internal energy
is computed after the two wavefronts, i.e., the Alfvénic pulse and the nonlinearly generated
sonic pulse, have abandoned the smaller region and the larger domain is needed to avoid the
eventual reflection that appears when the Alfvénic pulse reaches the boundaries. The initial
kinetic energy is computed as

ek(t = 0) =
1

2l1

∫ l1

−l1

∑

s

ρs(x, t = 0)
[
V (1)

y (x, t = 0)
]2

dx, (5.31)
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Figure 5.11: Second-order perturbations generated by the propagating Alfvénic pulses shown in
Figure 5.10 at several times of the simulation. From top to bottom: x-component of the velocity,
density, pressure, and temperature. The vertical dotted-dashed and dotted lines represent the
position of points moving at c̃A and c̃S from the origin. (An animation of this figure is available.)
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Figure 5.12: Percentage of the initial kinetic energy that is transformed into background internal
energy as a function of the width of the initial pulse.

and the variation of the internal energy of the medium is given by

∆eP (t) =
1

2l1

∫ l1

−l1

∑

s

P
(2)
s (x, t) − Ps,0(x)

γ − 1
dx. (5.32)

Figure 5.12 shows that the deposition of energy into the plasma has a remarkable dependence
on the width of the pulse. A peak of ∆ep/ek(t = 0) ≈ 6% is found at FWHM = 105 m, which
corresponds to a perturbation with an amplitude of Vy,0 = 0.1cA/

√
2. At larger widths, the

fraction of deposited energy decreases exponentially. This behavior can be understood by taking
into account that the width of a Gaussian pulse is associated with a certain scale of wavelengths
or wavenumbers. The previous statement can be checked by calculating the Fourier transform
of the initial perturbation, which is defined as

F
[
V (1)

y

]
≡ 1

2π

∫ ∞

−∞

V (1)
y (x, t = 0) exp (−ikxx) dx. (5.33)

The Fourier transform of a Gaussian function in x is another Gaussian function in kx. Moreover,
the relation between the widths of the two Gaussians is inversely proportional, i.e., if the width
of the initial perturbation is increased, the width of its Fourier transform becomes smaller.
Hence, perturbations with larger widths are associated to smaller scales of wavenumbers and
it has been shown in the previous studies that at smaller wavenumbers the coupling between
the species of the plasma is stronger and the dissipation of energy is smaller. Figures 5.13 and
5.14 evidence this behavior. The top panels of Figure 5.13 show the evolution of the initial
perturbation for the case of FWHM = 2×105 m. For the sake of clarity, only the y-component
of the velocity of protons is represented. The bottom panels display the corresponding Fourier
transform. Although it is not very clear by simple inspection of the plot, it can be checked that
the width of Fourier transform diminishes as time advances. The width in the initial step is
FWHM ≈ 0.267× 10−4 m−1 and after 30 s it has been reduced to FWHM ≈ 0.204× 10−4 m−1.
Thus, the larger wavenumbers have been removed.

The reduction of the width is more obvious in Figure 5.14, which corresponds to an initial
velocity pulse with FWHM = 5 × 104 m. The Fourier transform on the left bottom panel has
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Figure 5.13: The upper panels show the normalized component y of the velocity of protons at
(a) t = 0, (b) t = 15 s, and (c) t = 30 s of a simulation with an initial pulse with FWHM =
2 × 105 m. The bottom panels show the corresponding normalized Fourier transform of the
wave at the same times.

Figure 5.14: Same as Figure 5.13 but for a velocity pulse with FWHM = 5 × 104 m.
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a width given by FWHM ≈ 1.1 × 10−4 m−1, while the one displayed at the right panel has
FWHM ≈ 0.31 × 10−4 m−1, i.e., it has been reduced to less than a third of the original width.
In this case, large wavenumbers have been efficiently dissipated due to the effect of collisions
and a non-negligible fraction of energy has been transfered to the background plasma.

Additional series of simulations have been performed to check if the trend examined in the
previous paragraphs is also found under different conditions. In the first set of new simulations
we apply the initial perturbation only to the ions, leaving neutrals initially at rest. In another
series of simulations we perturb the y-component of the magnetic field instead of the velocity.
The results are represented in the left and right panels of Figure 5.15, respectively. For the
latter case, the magnetic energy density of the initial perturbation has been computed as

eB(t = 0) =
1

2l1

∫ l1

−l1

[
B

(1)
y (x, t = 0)

]2

2µ0

dx. (5.34)

The comparison of Figure 5.12 and the left panel of Figure 5.15 shows the same type of
dependence of the energy deposition on the width of the perturbation. However, the peak value
is ∼ 2% when neutrals are initially at rest instead of ∼ 6% when the perturbation is applied
to all species. The reason may be that a considerable fraction of the energy has to be used in
setting the neutrals in motion by means of collisions with ions: it must be reminded that under
the chosen prominence conditions, neutrals account for 2/3 of the total mass of the plasma.

When the perturbation is applied to the y-component of the magnetic field, the dependence
of the energy transfer is similar to the one found in the previous cases. The peak appears at
FWHM ≈ 105 m and it has the same value as in Figure 5.12, ∼ 6%. So, regarding the eventual
energy deposition into the plasma due to wave dissipation, it is irrelevant whether the energy
of the initial perturbation is kinetic or magnetic, as long as the total energy is the same.

Figure 5.15: Percentage of the energy of the initial perturbation transformed into internal
energy of the plasma. Left: the perturbation is applied to the y-component of the velocity of
ions, leaving the neutrals at rest. Right: the perturbation is applied to the y-component of the
magnetic field.

The results described in the paragraphs above seem to be in good agreement with the
findings of Chapters 3 and 4, i.e., larger wavenumbers are more damped than smaller ones.
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However, for very small values of the perturbation width, Figures 5.12 and 5.15 show a peculiar
trend that diverges from what it might be expected: the efficiency of energy deposition decreases
as the width of the initial perturbation is reduced (and the associated wavenumbers are larger).
The reason may be related to the the fact that quite large amplitudes of the perturbations
are needed when the widths are reduced in order to keep the initial energy the same in all
simulations. As already mentioned, the energy of the initial perturbation is used in two ways,
namely generation of waves and heating of the plasma. Hence, the internal energy has two
components: one associated to the propagating wavefronts and another one related to energy
gains and losses of the background plasma. A study of how those two components vary is
illustrated by Figure 5.16, where the temporal evolution of the kinetic, magnetic, internal and
total energy is displayed for four simulations.

Figure 5.16: Temporal evolution of the different components of the energy density for several
simulations where the initial perturbation has been applied to y-component of velocity. Red
dashed lines represent the kinetic energy, green dashed lines represent the magnetic energy
while the black dotted lines correspond to the internal energy. Finally, the blue solid lines
represent the total energy, i.e., the sum of all three components. Top left: Vy,0 = 0.05cA; top
right: Vy,0 = 0.1/

√
2cA; bottom left: Vy,0 = 0.1cA; bottom right: Vy,0 = 0.2cA.

The energies represented in Figure 5.16 are computed for the domain x ∈ [−l1, l1]. That is
the reason why the total energy is not constant but diminishes with time: the waves are leaving
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the region of interest, carrying with them an important fraction of the initial total energy. This
can be clearly noticed at t ≈ 10 s, when most of the kinetic and magnetic energy goes to zero
because Alfvén waves start crossing the boundaries. Later, the nonlinearly-generated sound
waves also abandon the domain and the remaining energy is, then, truly associated with what
is deposited in the plasma.

It must be noted that the peak that can be seen at t ≈ 80 s is a consequence of the sound
waves leaving the domain of interest. It does not mean that there is a sudden increase of
energy in the simulation: when the whole domain of the simulation is considered, the total
energy remains constant. The peak appears because the leading section of the sound wave has
a negative contribution to the perturbation of the internal energy (as can be seen in the third
row of Figure 5.11) and, as it leaves the smaller domain, generates the effect of an apparent
rise of energy.

Focusing on the first seconds of the simulations, it can be seen that the amount of the initial
energy that is transformed into internal energy increases with the amplitude of the perturbation
(or, equivalently, when the width diminishes): the height of the dashed line (which represents
the internal energy) at t ≈ 10 s is larger in the bottom right panel, which corresponds to an
amplitude of Vy,0 = 0.2cA and FWHM = 1.25 × 104 m. Thus, a larger amplitude of the initial
perturbation corresponds to a larger increment of the internal energy. However, the distribution
of this increment between the energy associated to the propagating wavefronts and that actually
deposited into the plasma is not always the same: for instance, although the increase of internal
energy is larger for Vy,0 = 0.2cA than for Vy,0 = 0.1cA (bottom left panel), at the end of the
simulation the latter case retains more internal energy. This means that the contribution from
waves represents a larger fraction of the internal energy when the amplitude of the perturbation
increases, i.e., when the nonlinear effects are more relevant. The reason is that more energy
is required to generate second-order waves when the amplitude of the first-order perturbation
increases, which leaves a smaller fraction of the initial energy that can be used in heating the
plasma.

5.4 Discussion

Nonlinear waves in partially ionized plasmas have been studied in this chapter by means of a
multi-fluid model in which the effects of elastic collisions between all species of the plasma are
taken into account. The general properties of nonlinear low-frequency Alfvén waves analyzed
here are consistent with the results obtained by, e.g., Hollweg [1971], Rankin et al. [1994],
Tikhonchuk et al. [1995] or Verwichte et al. [1999] for fully ionized plasmas, although differences
appear due to the collisional interaction between ions and neutrals. For example, a second-
order effect of nonlinear standing Alfvén waves is the appearance of a ponderomotive force that
induces fluctuations in density, pressure and the longitudinal component of the velocity. For the
case of standing waves in fully ionized plasmas, those variations are a combination of two modes
with frequencies given by 2kzcA and 2kzcie, and their wavenumber is twice the value for the
original perturbation. However, in partially ionized plasmas, the frequencies are proportional
to the modified Alfvén speed, c̃A and the weighted mean sound speed, c̃S, respectively, when
the small-wavenumber range is considered. Since in the plasmas that have been examined here
c̃A is much lower than c̃S, the second-order oscillations induced by the ponderomotive force are
dominated by the mode associated with the sound speed. Due to this ponderomotive force, the
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matter of the plasma tends to accumulate at the nodes of the magnetic field wave, although
such accumulation is limited by the effect of pressure.

If the wavenumber of the perturbations is increased, the coupling between the different
species is reduced and the collisional friction becomes relevant. It is then that multi-fluid effects
become of interest. The plasma is heated and the effect of pressure against the accumulation of
matter is enhanced. Due to the dissipation of the Alfvén wave and the increase of pressure by
ion-neutral collisions, the result of the second-order perturbations is the displacement of matter
from the nodes of the magnetic field towards the anti-nodes. At even higher frequencies, the
species of the plasma become almost uncoupled from each other and the oscillation frequencies
of the second-order waves tend to the values predicted for fully ionized plasmas, although they
are strongly damped because of collisions. These results were obtained through the study of
an initial perturbation that was weakly nonlinear. Cases with larger amplitudes have also
been briefly analyzed and it was found that the profile of the nonlinear waves steepens as
time advances and the frequency of the oscillations are slightly modified due to the more
important variations of density, which is consistent with the findings of Tikhonchuk et al.
[1995] or Verwichte et al. [1999].

The propagation of nonlinear pulses through a plasma with conditions akin to those of a
solar quiescent prominence has also been examined. The simulations have shown that after
the initial perturbation has been applied to the plasma, the pulse splits in two smaller pulses
that propagate in opposite directions at a speed given by c̃A. The amplitude of those pulses
decreases with time due to the collisions between ions and neutrals, which dissipates a fraction
of the energy of the initial perturbation. The amount of dissipated energy increases when the
width of the perturbation decreases. A Fourier analysis has revealed that this behavior is due
to the larger wavenumbers associated with a smaller width of the Gaussian pulse. According
to the results from Chapter 4, waves with larger wavenumbers have shorter damping times due
to ion-neutral collisions, while perturbations with smaller wavenumbers are more long-lived.
Hence, the widths of the pulses increase and their amplitudes diminish with time as the larger
wavenumbers are dissipated by the collisional friction.

As a second-order effect, the pulse generates two pairs of longitudinal waves that propagate
in opposite directions. The phase speeds of those waves are given by c̃A and c̃S, respectively,
as one of them is associated to the primary Alfvén wave and the other one with a nonlinearly
generated sound wave. In addition, a fraction of the initial energy is deposited in the plasma
in form of heat. Consequently, the temperature of the plasma rises. The numerical simulations
show that the heating generally increases when the width of the pulse is decreased, which, as
already mentioned, is associated with the efficient dissipation of small scales. However, at small
enough widths, the computed heating decreases again. This may be explained by the highly
nonlinear amplitude of the perturbations. When the amplitude of the initial perturbation is
increased, the generation of the second-order waves requires a larger fraction of the initial
energy; hence, there is a smaller fraction of energy available to be transformed into heat from
the first-order wave. For conditions of solar quiescent prominences, the investigation presented
here has found that a maximum of a 6% of the energy of the initial perturbation is finally used
in heating the plasma. However, this value may vary if longer times, larger domains or different
physical conditions are chosen for the simulations.

It must be noted that, in contrast with the previous chapters of this Thesis, here only the
cases of standing and propagating waves generated by an impulsive driver have been considered.
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5.4. DISCUSSION

Thus, it would be interesting to study in a future work how partial ionization affects nonlinear
waves excited by a periodic driver. The continuous input of energy should have a stronger im-
pact on the heating of the plasma in comparison with the limited energy provided by impulsive
perturbations. Moreover, the effects of inhomogeneities, such as the gravitationally stratified
plasma of the solar chromosphere, and realistic geometries for solar prominences should be
investigated in the future. Furthermore, here we have limited ourselves to the simplest case
of 1.5D simulations. More realistic studies in 2D and 3D, which would allow us to explore in
depth the properties of magnetoacoustic waves, are left for future works.
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Part III

Kelvin-Helmholtz instability in
partially ionized plasmas
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Chapter 6

KHI in partially ionized solar
prominences∗

6.1 Introduction

In the previous chapters, an extensive study of the propagation of perturbations in plasmas
under the condition that the background medium is static has been presented. However, there
are numerous physical situations, like, e.g., coronal mass ejections, astrophysical jets or su-
pernova explosions, and environments like, for instance, molecular clouds, acretion disks or
planetary magnetospheres, in which such condition is not applicable and needs to be removed.
The consideration of non-static backgrounds leads to a rich variety of interesting phenomena
like the Doppler shift of wave frequencies, the Rayleigh-Taylor instability, which may appear
when a heavier fluid is superposed over a lighter one or when two fluids of different densities are
accelerated toward each other (see Rayleigh [1882], Taylor [1950]), the two-stream instability
caused by velocity drifts between the charged species that composed a plasma (see, e.g., Haeff
[1949], Bohm and Gross [1949]), or the Kelvin-Helmholtz instability (KHI), which is the topic
that will be analyzed in the present chapter, among many others.

It is known that the KHI is triggered by relative motions of the different layers of a stratified
heterogeneous fluid or when there is a shear flow velocity at the interface that separates two
fluids (see Helmholtz [1868], Thomson [1910]). In the presence of such a shear flow, if a
small-amplitude perturbation is applied to the interface, a fraction of the energy of the flow is
transferred to the perturbation and causes it to grow exponentially. However, this exponential
growth is not maintained for all times but only during the interval in which the amplitudes
of the perturbations are small compared to their respective background values, i.e., during the
so-called linear regime. At longer times, the interface is greatly distorted and the initially
small ripples are turned into vortexes before there is a turbulent mixing of the two fluids. This
sequence of stages of the KHI is well illustrated by Figure 6.1, which represents a numerical
simulation performed by Krasny [1988].

The investigation of the KHI is of great interest because it has been observed in a huge
variety of environments. For instance, it has been seen in Earth’s clouds and in Jupiter’s atmo-

∗This chapter is partially based on: Mart́ınez-Gómez, D., Soler, R. and Terradas, J.; 2015, Onset of the
Kelvin-Helmholtz instability in partially ionized magnetic flux tubes, Astronomy and Astrophysics, 578, A104
(Mart́ınez-Gómez et al. [2015])
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6.1. INTRODUCTION

Figure 6.1: Development and evolution of a Kelvin-Helmholtz instability. Adapted from Krasny
[1988].

sphere, as shown by Figure 6.2, or in the solar corona, from which an example is given in Figure
6.3. Furthermore, its presence has been suggested and studied in many other astrophysical con-
texts, such as Earth’s aurora (Hallinan and Davis [1970]), the magnetopause (Hasegawa [1975]),
planetary magnetospheres (Ogilvie and Fitzenreiter [1989]), protoplanetary disks (Gómez and
Ostriker [2005]), cometary tails (Ershkovich et al. [1986]), jets and outflows (Keppens et al.
[1999]), nebulae (Berné et al. [2010]) or molecular clouds (Shadmehri and Downes [2007]).

The main motivation of the investigation that will be performed later in this chapter is that
observations of the solar atmosphere have shown the presence of turbulent flows in quiescent
prominences (see, e.g., Berger et al. [2010], Ryutova et al. [2010]) and these phenomena have
been interpreted in terms of the Rayleigh-Taylor instability and the KHI. Classical MHD studies
(see, e.g., Chandrasekhar [1961], Drazin and Reid [1981]) have shown that, as a result of
the effect of a longitudinal magnetic field, fully ionized incompressible plasmas are stable to
small-amplitude perturbations if the velocity of the shear flow is lower than the root-mean-
square Alfvén speed of the two fluids. Accordingly, the magnetohydrodynamic KHI can only
be triggered by super-Alfvénic shear flows. Some of the turbulent flows detected in quiescent
prominences exhibit a behavior that resembles the non-linear stage of the KHI. However, the
measured velocities in those structures, which are lower than 30 km s−1 (Zirker et al. [1998],
Berger et al. [2010]), are below the threshold for triggering this instability, which is of the
order of 100 km s−1 (see, e.g., Terradas et al. [2008b]). Therefore, it might appear as if these
turbulences cannot interpreted as consequences of KH instabilities. However, the condition
previously mentioned only applies to fully ionized plasmas, and quiescent prominences are not
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Figure 6.2: Left panel: clouds subject to the KHI (Credit: Brooks Martner, NOAA/ETL).
Right panel: KHI in Jupiter’s atmosphere seen during a Voyager 2 flyby (Credit: NASA.)

Figure 6.3: SDO/AIA image of KHI in a coronal mass ejection. From Foullon et al. [2011]

fully ionized, but are partially ionized, that is, they contain a neutral component that should
not be overlooked. Those neutral particles do not feel the magnetic field and therefore ignore its
stabilizing effect. The existence of this neutral component and its interaction with the charged
particles may modify the criterion for the appearance of the KHI, possibly allowing the onset
of the instability even for sub-Alfvénic velocities.

The KHI in partially ionized incompressible plasmas has already been studied, for example,
by Watson et al. [2004] and Soler et al. [2012b], and it has been found that neutrals are unstable
even for sub-Alfvénic flows and lead to the instability of the whole plasma. Therefore, in the
absence of certain stabilizing factors such as surface tension, partially ionized incompressible
plasmas are always unstable in the presence of a velocity shear. These results have been
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obtained for the case of a Cartesian interface but the magnetic field in the solar atmosphere
is better represented by means of flux tubes. Hence, a step forward in the research of this
topic is to analyze the possible onset of the KHI in partially ionized magnetic flux tubes. Such
investigation is performed here by means of the multi-fluid theory presented in Chapter 2 and a
model that considers a prominence thread to be a cool and dense cylindrical structure embedded
in an hotter and lighter unbounded environment. The findings of this research are shown in
Section 6.3, after some of the already mentioned basic results about the KHI are recovered and
discussed in Section 6.2.

6.2 KHI in a Cartesian interface between two fully ion-

ized plasmas

The linear regime of the Kelvin-Helmholtz instability in two media separated by a Cartesian
interface has been extensively analyzed in, e.g., Chandrasekhar [1961]. In this section, the main
results of that work are derived again, but following a different procedure similar to that shown
in Soler et al. [2012b]. Such results are presented here with the goal of using them as a reference
to compare with the analysis performed in the next section.

6.2.1 Hydrodynamic KHI

In the first place, the basic case of fluids that are not affected by magnetic fields is studied.
To focus exclusively on how a longitudinal shear flow triggers the instability and produces
an exponential growth of the amplitude of the perturbations before reaching the non-linear
regime, effects like gravity, surface tension, compressibility or partial ionization of the fluids are
neglected. The physical system to be analyzed is composed of two unbounded homogeneous
fluids with densities ρa and ρb, respectively, which are separated by a sharp interface located at
x = 0. Hence, the dependence of the density on the direction normal to the interface is given
by

ρ(x) =

{
ρa if x ≤ 0,
ρb if x > 0.

(6.1)

The two fluids are assumed to flow along the z-direction, with a discontinuous jump in the
velocity V0(x) at the interface. Hence, V0(x) = (0, 0, U(x))T , with

U(x) =

{
Ua if x ≤ 0,
Ub if x > 0.

(6.2)

At each of the two media separated by the interface, the incompressible small-amplitude
perturbations obey the following equations:

ρ(x)

(
∂V1

∂t
+ V0 · ∇V1

)
= −∇P1 (6.3)

and

∇ · V1 = 0, (6.4)
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which can be combined to obtain the following expression for the pressure:

∇2P1 = 0. (6.5)

To perform a normal model analysis in time and Fourier analysis in space, the perturbations
are expressed in the form f(r, t) = f̂(x) exp(i[kyy + kzz−ωt]). Therefore, Equation (6.5) leads
to

∂2P̂1

∂x2
−
(
k2

y + k2
z

)
P̂1 = 0, (6.6)

whose solution is given by

P̂1(x) = A1 exp (k⊥x) + A2 exp (−k⊥x) , (6.7)

where the wavenumber k⊥ is defined as k⊥ ≡
√

k2
y + k2

z . The pressure is required to vanish
when x → ±∞. Thus,

P̂1(x) =

{
A1 exp (k⊥x) if x ≤ 0,
A2 exp (−k⊥x) if x > 0.

(6.8)

The boundary conditions require that the pressure is the same at both sides of the interface.
Therefore, A1 = A2 ≡ A. Furthermore, the x-component of the Lagrangian displacement
should also be continuous at x = 0. The relation between the velocities and the Lagrangian
displacement, denoted by ξ, is given by

V =
Dξ

Dt
≡ ∂ξ

∂t
+ V · ∇ξ. (6.9)

which, after linearization, leads to

V1x =
∂ξx

∂t
+ U(x)

∂ξx

∂z
, (6.10)

Hence, the x-component of Equation (6.3) can be written as

ρ(x)

(
∂

∂t
+ U(x)

∂

∂z

)2

ξx = −∂P1

∂x
. (6.11)

The combination of Equations (6.11) and (6.8) produces the following relations:

{
ρa (ω − Uakz)

2 ξx = Ak⊥ exp (k⊥x) if x ≤ 0,

ρb (ω − Ubkz)
2 ξx = −Ak⊥ exp (−k⊥x) if x > 0.

(6.12)

The boundary condition for the Lagrangian displacements at x = 0 implies that

Ak⊥

ρa (ω − Uakz)
2 =

−Ak⊥

ρb (ω − Ubkz)
2 . (6.13)

Hence, the dispersion relation that describes the properties of the perturbations at the interface
is given by

ρa (ω − Uakz)
2 + ρb (ω − Ubkz)

2 = 0, (6.14)
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6.2. KHI IN A CARTESIAN INTERFACE BETWEEN TWO FULLY IONIZED PLASMAS

whose solution is

ω = kz
ρaUa + ρbUb

ρa + ρb
± ikz∆U

√
ρaρb

ρa + ρb
, (6.15)

where ∆U ≡ |Ua − Ub| is the shear flow velocity. The positive imaginary part of one of the
two possible solutions means that the amplitude of the perturbations grows with time. This
growing solution exists for any value of ∆U different from zero. Therefore, the studied fluid is
always unstable in the presence of a longitudinal shear flow. However, it must be noted that
the previous statement is only true for the conditions chosen for the present analysis. It is not
accurate when more realistic conditions are studied, as shown in the work of Chandrasekhar
[1961] for the cases when neither the effects of gravity nor of surface tension are neglected, when
compressibility is taken into account, as shown by Soler et al. [2012b], or when the fluids are af-
fected by magnetic fields, as it will be discussed below. Another remarkable conclusion that can
be extracted from Equation (6.15) is that the growth rates are proportional to the wavenumber,
kz, which means that the shorter the wavelength, the most unstable the perturbation.

6.2.2 Magnetohydrodynamic KHI

Here, the effect of a magnetic field oriented in the same direction as the shear flow is studied.
Under these conditions, the perturbations in each media are described by the following linearized
equations:

ρ(x)

(
∂

∂t
+ U(x)

∂

∂z

)
V1 = −∇P1 +

1

µ0

(∇× B1) × B0, (6.16)

(
∂

∂t
+ U(x)

∂

∂z

)
B1 = ∇× (V1 × B0) , (6.17)

and
∇ · V1 = 0. (6.18)

The equilibrium magnetic field may be different in each media, but the equilibrium total pres-
sure must be continuous across the interface, which imposes some restrictions on the values of
the equilibrium pressure and magnetic field strength. Here, the magnetic field is chosen to have
the same value at both sides of the interface. Thus, it is given by B0 = (0, 0, B0)

T .
The combination of Equations (6.16) and (6.18) gives

∇2PT = 0, (6.19)

where the variable PT is the sum of the thermal and magnetic pressure perturbations, i.e.,
PT ≡ P1 + (B0B1z)/µ0. Hence, the solutions to this equation have the same form as those
shown in Equation (6.7).

Then, Equations (6.16) and (6.18) can be expressed as functions of the Lagrangian displace-
ments,

ρ(x)

(
∂

∂t
+ U(x)

∂

∂z

)2

ξ = −∇PT +
1

µ0
B0 · ∇B1, (6.20)

and (
∂

∂t
+ U(x)

∂

∂z

)
B1 = ∇×

[(
∂

∂t
+ U(x)

∂

∂z

)
ξ × B0

]
, (6.21)
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respectively. Following the same procedure as in the hydrodynamic case, it is possible to obtain
a new dispersion relation, namely

ρa

[
(ω − Uakz)

2 − ω2
A,a

]
+ ρb

[
(ω − Ubkz)

2 − ω2
A,b

]
= 0, (6.22)

where ωA is the Alfvén frequency, which is different for each media. The solution to this
equation is given by

ω = kz
ρaUa + ρbUb

ρa + ρb
± kz

[
B2

a + B2
b

µ0(ρa + ρb)
− ∆U2 ρaρb

(ρa + ρb)
2

]1/2

. (6.23)

Hence, the solutions have an imaginary part only when the term in brackets is lower than zero.
Contrary to the hydrodynamic case, there is a velocity threshold below which the perturbations
are stable and the magnetohydrodynamic KHI only appears if

∆U >

√
B2

a + B2
b

µ0

ρa + ρb

ρaρb

, (6.24)

or, equivalently,

∆U >

√
(ρac2

A,a + ρbc2
A,b)(ρa + ρb)

ρaρb
. (6.25)

The velocity threshold, which is super-Alfvénic as can be checked from the equation above, is
caused by the effect of the longitudinal magnetic field.

6.3 KHI in partially ionized magnetic flux tubes

The two results presented in the previous section are applicable to fluids that are not affected
by magnetic fields and to fully ionized plasmas, respectively, but they are not accurate when
applied to the investigation of threads in solar prominences. There are two reasons for this
inaccuracy. In the first place, as already mentioned, quiescent prominences are not fully ionized
but are partially ionized. Hence, it is necessary to take into account the interaction between
the ionized and the neutral components of the plasma to properly investigate the possible onset
of the KHI in those environments. The second reason is geometrical: prominence threads are
better represented by magnetic flux tubes embedded in a hotter and lighter medium.

In this section, a model that takes into account those two properties of prominence threads
is developed. Then, the multi-fluid theory from Chapter 2 is applied to that model with the
goal of investigating the influence of partial ionization on the onset of KHI in magnetic flux
tubes and comparing the new results with those shown in Section 6.2 and with data from
observations of solar prominences.

6.3.1 Model, equations and derivation of the dispersion relation

Here, the equilibrium state is a partially ionized cylindrical magnetic flux tube of radius a
embedded in an unbounded medium. The system is described by means of cylindrical coordi-
nates, namely r, ϕ, and z, for the radial, azimuthal, and longitudinal coordinates, respectively.
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A sketch of the model can be found in Figure 6.4. The subscripts “0” and “ex” denote quan-
tities related to the internal and the external plasma, respectively. The densities of ions and
neutrals are ρi and ρn and only depend on the radial direction as

ρi(r) =

{
ρi,0 if r ≤ a,
ρi,ex if r > a,

(6.26)

ρn(r) =

{
ρn,0 if r ≤ a,
ρn,ex if r > a.

(6.27)

Hence, there is an abrupt jump in density between the internal and external plasmas. The

Figure 6.4: Sketch of the model

magnetic field is constant and pointing along the flux tube axis, with the same value in both
media, B0(r, ϕ, z) = (0, 0, B0)

T . In addition, there is a longitudinal mass flow with constant
velocity denoted by U . The flow velocity is discontinuous at the boundary of the flux tube.

To study this system, a two-fluid theory, i.e., a simplified version of the system of equations
presented in Chapter 2, is used. It assumes that the plasma is composed of an ionized fluid made
of ions and electrons and a second fluid made of neutral particles only. Those two fluids may
interact by means of momentum-transfer collisions between ions and neutrals. In addition,
only small-amplitude perturbations are studied, so the linearized version of the equations is
employed. The set of two-fluid equations that describe the behavior of linear incompressible
perturbations superimposed on the equilibrium state is

ρi

(
∂

∂t
+ U

∂

∂z

)
Vi = −∇Pie +

1

µ0
(∇× B1) × B0 − ρnνni (Vi − Vn) , (6.28)

ρn

(
∂

∂t
+ U

∂

∂z

)
Vn = −∇Pn − ρnνni (Vn − Vi) , (6.29)
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(
∂

∂t
+ U

∂

∂z

)
B1 = ∇× (Vi × B0) , (6.30)

∇ · Vi = ∇ · Vn = 0, (6.31)

where Vi and Vn are the velocity perturbations of ions and neutrals, and Pie and Pn are the
pressure perturbations of the ion-electrons and neutrals fluids.

Once again, it is helpful to use the Lagrangian displacements instead of the velocities as
primary variables. In the present investigation, the relation between the perturbations of
velocity and the Lagrangian displacements is given by

Vi =
∂ξi

∂t
+ U

ξi

∂z
; Vn =

∂ξn

∂t
+ U

ξn

∂z
. (6.32)

Thus, Equations (6.28)-(6.31) are transformed into

ρi

(
∂

∂t
+ U

∂

∂z

)2

ξi = −∇Pie +
1

µ0
(∇× B1) × B0 − ρnνni

(
∂

∂t
+ U

∂

∂z

)
(ξi − ξn) , (6.33)

ρn

(
∂

∂t
+ U

∂

∂z

)2

ξn = −∇Pn − ρnνni

(
∂

∂t
+ U

∂

∂z

)
(ξn − ξi) , (6.34)

(
∂

∂t
+ U

∂

∂z

)
B1 = ∇×

[(
∂

∂t
+ U

∂

∂z

)
ξi × B0

]
, (6.35)

and

∇ ·
(

∂

∂t
+ U

∂

∂z

)
ξi = ∇ ·

(
∂

∂t
+ U

∂

∂z

)
ξn = 0, (6.36)

respectively.
The next step in the procedure to obtain the dispersion relation is to perform a normal

mode analysis. Since the equilibrium is uniform in the azimuthal and longitudinal directions,
the perturbations are expressed as proportional to exp(imϕ + ikzz), where m and kz are the
azimuthal and longitudinal wavenumbers, respectively. The dependence of the perturbations
on the radial direction is retained and the temporal dependence is set as exp(−iωt), where ω
is the angular frequency.

From the radial component of Equations (6.33), after combining it with the induction equa-
tion, and (6.34), it is possible to obtain the following expressions:

∂PT

∂r
= ρi

(
Θ2 − ω2

A + iχνniΘ
)
ξr,i − iρnνniΘξr,n (6.37)

and
∂Pn

∂r
= −iρnνniΘξr,i + ρnΘ(Θ + iνni)ξr,n, (6.38)

respectively, where Θ = ω − Ukz is the Doppler-shifted frequency, ωA = kzcA is the Alfvén
frequency, and the variable PT is the sum of the thermal and magnetic pressures of the ionized
fluid, and is defined as

PT = Pie +
B0 · B1

µ
= Pie +

B0B1z

µ0
. (6.39)
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Then, the azimuthal and longitudinal components of Equations (6.33), (6.34) and (6.35)
can be combined with the incompressibility condition, Equation (6.36), to obtain the other two
equations that are needed to solve the system, namely,

ρi

(
Θ̃2 − ω2

A

) 1

r

∂(rξr,i)

∂r
=

(
m2

r2
+ k2

z

)(
PT + i

νni

Θ + iνni

Pn

)
, (6.40)

and

ρnρi

(
Θ̃2 − ω2

A

) 1

r

∂(rξr,n)

∂r
= i

νni

Θ + iνni
ρn

(
m2

r2
+ k2

z

)
PT

−
(

m2

r2
+ k2

z

)
 ρnν2

ni

(Θ + iνni)2
−

ρi

(
Θ̃2 − ω2

A

)

Θ(Θ + iνni)


Pn, (6.41)

where the parameter Θ̃, which will be referred to as the modified frequency, is defined through
the following relation:

Θ̃2 = Θ2

(
1 +

iχνni

Θ + iνni

)
(6.42)

Now, the combination of Equations (6.37), (6.38), (6.40), and (6.41) leads to two uncoupled
equations for the pressures, namely

∂2PT

∂r2
+

1

r

∂PT

∂r
−
(

k2
z +

m2

r2

)
PT = 0, (6.43)

and
∂2Pn

∂r2
+

1

r

∂Pn

∂r
−
(

k2
z +

m2

r2

)
Pn = 0, (6.44)

whose solutions are combinations of modified Bessel functions of the first and second kind,
Im(kzr) and Km(kzr), respectively. It is required that the solutions are regular at r = 0 and
vanishing at r → ∞. Hence,

PT (r) =

{
A1Im(kzr) if r ≤ a,
A2Km(kzr) if r > a,

(6.45)

Pn(r) =

{
A3Im(kzr) if r ≤ a,
A4Km(kzr) if r > a,

(6.46)

where A1 − A4 are arbitrary constants. In turn, the radial components of the Lagrangian
displacements of the two fluids are related to PT and pn by

ξr,i =
1

ρi

(
Θ̃2 − ω2

A

)
(

∂PT

∂r
+ i

νni

Θ + iνni

∂Pn

∂r

)
(6.47)

and

ξr,n =


 1

ρnΘ (Θ + iνni)
− ν2

ni

(Θ + iνni)
2

1

ρi

(
Θ̃2 − ω2

A

)


 ∂Pn

∂r

+ i
νni

Θ + iνni

1

ρi

(
Θ̃2 − ω2

A

) ∂PT

∂r
. (6.48)
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The dispersion relation that describes the behavior of the waves in this system is found
by imposing the conditions that PT , Pn, ξr,i and ξr,n are continuous at r = a, that is, at the
boundary of the tube. After applying the boundary conditions, a system of algebraic equations
for the constants A1 − A4 is obtained. The non-trivial solution to the system provides the
dispersion relation, which is given by

[
I ′
m(kza)

Im(kza)
ρn,exΘex (Θex + iνni,ex) −

K ′
m(kza)

Km(kza)
ρn,0Θ0 (Θ0 + iνni,0)

]

×
[
I ′
m(kza)

Im(kza)
ρi,ex

(
Θ̃2

ex − ω2
A,ex

)
− K ′

m(kza)

Km(kza)
ρi,0

(
Θ̃2

0 − ω2
A,0

)]

+
I ′
m(kza)

Im(kza)

K ′
m(kza)

Km(kza)

ρn,0ρn,exΘ0Θex

(Θ0 + iνni,0) (Θex + iνni,ex)

× [νni,0 (Θex + iνni,ex) − νni,ex (Θ0 + iνni,0)]
2 = 0, (6.49)

where the prime denotes the derivative of the modified Bessel function with respect to its
argument.

For a given longitudinal wavenumber, Equation (6.49) yields an infinite number of oscillation
modes, each one associated to a particular azimuthal wavenumber, m. Some of these modes are
known with specific names due to their importance in the investigations of waves in flux tubes
(see, e.g., Edwin and Roberts [1983]). For instance, the mode with m = 0, which produces
expansions and contractions of the plasma tube but without displacing its axis, is called the
sausage mode, and the mode with m = 1, which is the only one that causes displacements of
the axis of the cylinder, is known as kink mode.

In the limit when kza ≪ 1, which is known as the thin tube (TT) aproximation, the
dispersion relation becomes much simpler and some of the previous known results about the
KHI can be recovered. For any azimuthal wavenumber m 6= 0, if an asymptotic expansion of
the modified Bessel functions for small arguments and only the first term in the expansion is
kept, the TT dispersion relation is given by

[
ρi,0

(
Θ0 (Θ0 + iχ0νni,0) − ω2

A,0

)
+ ρi,ex

(
Θex (Θex + iχexνni,ex) − ω2

A,ex

)]

× [ρn,0Θ0 (Θ0 + iνni,0) + ρn,exΘex (Θex + iνni,ex)]

+ [ρn,0Θ0νni,0 + ρn,exΘexνni,ex]
2 = 0. (6.50)

The expression above coincides with that already derived by Soler et al. [2012b] in their
study of the KHI in a Cartesian interface. Hence, the geometrical effect associated with the
cylindrical magnetic tube disappears when the TT approximation is considered. Furthermore,
if the terms associated with the ion-neutral collisions are neglected, which means that ions are
decoupled from neutrals, the dispersion relation becomes

[
ρi,0(Θ

2
0 − ω2

A,0) + ρi,ex(Θ
2
ex − ω2

A,ex)
]
[ρn,0Θ

2
0 + ρn,exΘ

2
ex] = 0, (6.51)

from which it is easy to recover the solutions corresponding to the classical hydrodynamic and
magnetohydrodynamic KHI already shown in Section 6.2.

To obtain the solutions for the coupled case, the full dispersion relation is generally solved
using numerical methods. However, it is possible to find an approximate analytical solution
when the ion-neutral coupling is strong and sub-Alfvénic flows are considered. It is known
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that for sub-Alfvénic flows, the only unstable solution in the uncoupled case is that associated
with neutrals, since the magnetic field is able to stabilize ions. Thus, the way of obtaining
the approximate solution is trying to find a correction to the neutrals-related solution due to
ion-neutral collisions. To do so, the frequency is written as ω = ω0 + iγ, where ω0 is the
neutrals’ unstable solution given by Equation (6.15) and γ is a small correction. The previous
expression for the frequency is inserted into the TT dispersion relation and only the terms up
to first order in γ and second order in U0 are kept, while the external flow velocity is taken to
be zero, Uex = 0. After some algebraic manipulations, a solution for γ can be found and the
the approximate solution for the frequency is given by

ω ≈ kzU0ρn,0

ρn,0 + ρn,ex

+ i
2k2

zU
2
0 ρn,0ρn,ex

(ρn,0 + ρn,ex)(νni,0ρn,0 + νni,exρn,ex)
. (6.52)

The previous formula shows that the approximated growth rate has a quadratic dependence on
the flow velocity and is inversely proportional to the collision frequencies. Hence, the growth
rate is lower in the strongly coupled case than in the uncoupled case, which means that ion-
neutral collisions have a stabilizing effect on the neutral fluid. The question then arises: are
ion-neutral collisions able to completely stabilize neutrals for sub-Alfvénic flows, as in the fully
ionized case, or is the neutral component of the plasma always unstable?

6.3.2 Exploring the parameter space

In this section, a study of the dependence of the solutions of the dispersion relation with respect
to various physical parameters will be performed. In addition, those results will be compared
with the analytical approximation shown in the previous section and the range of validity of the
latter will be checked. To keep this analysis as general as possible, dimensionless parameters
will be used here, while actual physical parameters will be employed later in Section 6.3.3, in
which an application to solar prominence threads will be given.

Here, for simplicity, the collision frequency is chosen to have the same value in both internal
and external plasmas, i.e., νni,0 = νni,ex ≡ νni. In addition, the focus is put on the kink mode;
hence, m = 1.

The exploration of the parameter space is started with the study of the dependence of
the solutions of the dispersion relation with respect to the shear flow velocity. Thus, ∆U is
taken as a free variable. Then, the dispersion relation is solved using the following parameters:
ρi,0/ρi,ex = 2, ρn,0/ρn,ex = 2, ρn,0/ρi,0 = 1, cA,0 = 1 and kza = 0.1. The top and the bottom
panels of Figure 6.5 display the normalized real and imaginary parts of the frequency, respec-
tively, as functions of the normalized shear flow velocity, ∆U/cA,0 for three different degrees of
coupling. The normalization parameter ωk is known as the kink frequency, which corresponds
to the frequency of the kink wave in the TT limit for a fully ionized plasma (see, e.g., Ryutov
and Ryutova [1976], Spruit [1981]), and is given by

ωk = kz

√
ρi,0c

2
A,0 + ρi,exc

2
A,ex

ρi,0 + ρi,ex

. (6.53)

Panels a), b) and c) correspond to the cases of weak coupling (νni/ωk = 0.1), intermediate
coupling (νni/ωk = 1), and strong coupling (νni/ωk = 10), respectively. The red symbols
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Figure 6.5: Upper panels: ωR/ωk as a function of the normalized shear flow velocity, ∆U/cA,0,
for kza = 0.1, m = 1, and three different collision frequencies (a) νni/ωk = 0.1, b) νni/ωk =
1 and c) νni/ωk = 10). Lower panels: ωI/ωk as a function of ∆U/cA,0 for the same set
of parameters as above. The symbols represent the solutions of the full dispersion relation,
i.e., Equation (6.49); the blue solid lines correspond to the analytical approximation given by
Equation (6.52), and the blue dashed lines show the unstable branch of the neutral fluid when
there is no coupling (Equation (6.15)).

represent the solutions obtained numerically from the complete dispersion relation, Equation
(6.49). This results are compared with the analytical solutions in the strongly coupled limit,
which are represented by the blue solid lines, and in the uncoupled case, displayed as blue
dashed lines. In addition, the classical shear flow velocity threshold for the KHI in a fully
ionized plasma, given by Equation 6.25, is represented by the vertical dotted lines.

By inspecting the top panels of Figure 6.5, it can be seen that the real part of the frequency
has a very similar behavior in the three studied cases. Initially, when the shear flow velocity is
zero, there are two solutions with nonzero ωR. These solutions are associated with the ionized
fluid and correspond to the usual kink magnetohydrodynamic waves found in fully ionized
tubes (Edwin and Roberts [1983]): the solution with ωR > 0 is the forward-propagating kink
wave, while the one with ωR < 0 is the backward-propagating wave. A third solution with
ωR > 0 emerges when the shear flow velocity increases from zero. It is associated with the
neutral component of the plasma in the sense that it only appears in the presence of neutrals.
However, it must be noted that such simple associations between solutions and fluids cannot
be made when the coupling is high and ions and neutrals behave as a single fluid. As the
flow velocity continues to increase, the three solutions converge for a critical flow velocity that
depends on the collision frequency. The stronger the ion-neutral coupling, the lower the critical
flow. From that point on, the real part of the frequency is proportional to ∆U and is well
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described by the real part of Equation (6.15) or, equivalently, Equation (6.52).

As it can be seen in the lower panel of Figure 6.5, the degree of coupling has a much
more remarkable effect on the damping and growth rates of the perturbations than on their
oscillation frequencies. The shaded zone in those panels highlights the region with ωI > 0,
which corresponds to the area where the solutions are unstable and exponentially grow with
time. Any of the three panels reveals that for low shear flow velocities there is only one unstable
solution, corresponding to that originally associated with the neutral component of the plasma.
A second unstable branch (originally associated with ions) appears for higher flow velocities
above the classical super-Alfvénic threshold. By comparing the three panels, it is possible to
conclude that ion-neutral collisions reduce to a great extent the growth rate of the instability
that appears for sub-Alfvénic flows but are not able to completely suppress it (Watson et al.
[2004], Soler et al. [2012b]). In addition, the analytical approximation shows that, in its range of
applicability, the growth rate is directly proportional to the square of the shear flow velocity and
inversely proportional to the ion-neutral collision frequency. As expected, the approximation
agrees well with the numerical results for small shear flow velocities. For weak coupling, the
approximation is reasonably good for flow velocities up to 40% of the internal Alfvén speed.
When the collision frequency is increased, the range of agreement between the numerical results
and the approximation is greatly extended even to super-Alfvénic speeds.

Now, to investigate in more detail the effect of ion-neutral collisions on the instability for
slow flows, the shear flow velocity is fixed to the value ∆U/cA,0 = 1 and the solutions of
Equation (6.49) are computed as functions of the collision frequency, νni. The chosen flow
velocity is below the classical threshold for the KHI in fully ionized plasmas (Chandrasekhar
[1961]), so that in principle only the neutral component is unstable in this configuration. The
results of this study are displayed in Figure 6.6, where the solutions originally associated with

Figure 6.6: a) ωR/ωk and b) ωI/ωk for the kink mode (m=1) as a function of νni/ωk, with
∆U/cA,0 = 1 and kza = 0.1. The red diamonds are the solutions originally associated with the
ions when there is no coupling, while the blue crosses are the solutions for neutrals. The solid
line is the analytical approximation given by Equation (6.52). In b) the shaded area denotes
the region of instability.
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ions are shown as red diamonds and those originally associated with neutrals are plotted with
blue crosses. The right panel shows that there is always one unstable solution for any value of
νni, although its growth rate decreases when the collision frequency increases. The growth rate
is reduced because neutrals feel indirectly, through the collisions with ions, the stabilizing effect
of the magnetic field. In addition, as discussed before, the analytical approximation for the
growth rate, agrees well with the numerical results for high values of the collision frequencies,
as is consistent with the assumptions behind the approximation. Regarding the real part of the
solutions, it can be checked that the absolute value of the frequency of the modes associated
with ions decreases until it reaches a plateau for νni/ωk > 1 (Soler et al. [2013c]), while the
frequency of the solutions associated with the neutral stays constant all over the range. The
reason of the decrease in frequency of the former is that, due to the strong collisional coupling,
the two species oscillate together as a single fluid. Hence, the inertia of neutrals is added to
that of ions and the Alfvén frequency depends on the total density of the plasma (Kumar and
Roberts [2003], Soler et al. [2013b]).

For the sake of completeness, the next step is to study the dependence of the solutions
to Equation (6.49) on the azimuthal wavenumber. As shown by Equation (6.50), the results
in the TT limit are independent of the value of m for m 6= 0; this fact implies that in the
range of applicability of that approximation there will not be substantial variations in the
behavior of the different modes. Hence, to observe some dissimilarities, it is necessary to choose
parameters beyond the TT case. Figure 6.7 shows the results corresponding to a case with the
same densities and magnetic field as in the previous analyses but with a higher value of the
dimensionless longitudinal wavenumber, namely, kza = 2. Five different modes are represented,
which correspond to the following azimuthal wavenumbers: m = 0, m = 1, m = 2, m = 10 and
m = 100. The left panel shows that the oscillation frequency decreases when m increases. In

Figure 6.7: Solutions of Equation (6.49) as functions of the normalized shear flow for a nor-
malized wavenumber of kza = 2. The gray area on the right panel shows the region where the
solutions are unstable. The modes with m = 0, m = 1, m = 2, m = 10 and m = 100 are
represented by the blue solid lines, red diamonds, black dotted lines, black dashed lines and
green triangles, respectively.
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contrast, the right panel reveals that the modes with larger growth rates are those with higher
m. However, the dependence of the solutions on the azimuthal wavenumber is weak, specially
when modes with large m are compared with each other.

6.3.3 KHI in solar prominence threads

Here, the model of partially ionized magnetic flux tubes subject to a longitudinal flow is applied
to the investigation of solar prominence plasmas. The full dispersion relation, Equation (6.49),
is solved with values representative of a quiescent prominence. Therefore, the internal medium
represents a prominence thread with densities of protons and neutral hydrogen such that ρp,0 +
ρH,0 = 10−9 kg m−3, a temperature of T0 = 7000 K and radius of a = 100 km; the external
plasma is composed of inter-thread plasma with ρp,ex + ρH,ex = 2 × 10−10 km m−3, and Tex =
35000 K, which corresponds to the regime of prominence-corona transition region (PCTR).
Densities and temperatures are chosen so that the equilibrium condition of the total pressure
(thermal plus magnetic) is fulfilled, that is, the total pressure is the same in both media. The
magnetic fields are B0 = Bex = 10 G. The study is focused on the kink mode (m = 1).

The collision frequencies can be obtained from the friction coefficient given by Equation
(2.62), recalling the relation νns = αsn/ρn. Thus, assuming that both species have the same
temperature, the hydrogen-proton collision frequency is given by

νpH =
ρp

2mp

4

3

√
16kBT

πmp
σpH, (6.54)

where, according to Table 2.1, the cross-section of this interaction is σpH = 10−18 m−2.
Figure 6.8 displays the most unstable solution of Equation (6.49) as a function of the

shear flow velocity for three different values of the ionization fraction: the red dashed lines
represent the fully ionized case (χ = 0), the blue crosses represent a partially ionized situation
(χ = 4), and the black diamonds depict a weakly ionized case (χ = 100). The left panel shows
the results for a wavelength λ = 100 km, which corresponds to a longitudinal wavenumber
kz = 2π/λ = 2π × 10−5 m−1. In the right panel the wavelength used is λ = 1000 km, so
kz = 2π × 10−6 m−1. The shaded zone of Figure 6.8 denotes a range of typical velocities (from
10 km s−1 to 30 km s−1) that have been measured in quiescent prominences (Zirker et al. [1998],
Berger et al. [2010]). The limits of this zone could slightly vary depending on the observations
that are chosen as reference, but this variation is not significant for the present analysis.

It can be seen that for the fully ionized cases the instabilities only appear for shear velocities
far from the detected values. In contrast, the cases with a neutral component show instabilities
for the entire range of velocities. Hence, partial ionization may explain the occurrence of KHI
in solar prominence plasmas even when the observed flows are below the classical threshold.

The growth rates displayed on the right panel of Figure 6.8 are lower than those in the
left panel. More precisely, they are about one order of magnitude smaller when the shear flow
velocities are high. Since the wavenumber in the right panel is one order of magnitude smaller
than in the left panel, this behavior agrees with Equation (6.15). On the other hand, when the
velocities are low, the growth rates on the right are two orders of magnitude smaller, which is
consistent with the analytical approximation given by Equation (6.52).

In addition, the solid lines of Figure 6.8 represent the growth rates according to the analytical
approximation. It can be checked that they are within the same order of magnitude than the
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Figure 6.8: Application to solar prominence threads. Growth rates as functions of the shear
flow velocity for the following set of parameters: ρi,0 + ρn,0 = 10−9 kg m−3, ρi,ex + ρn,ex =
2 × 10−10 kg m−3, B0 = Bex = 10−3 T, a = 100 km, T0 = 7000 K and Tex = 35000 K; in
the left panel the wavenumber is kz = 2π/λ = 2π × 10−5 m−1 and in the right panel it is
kz = 2π × 10−6 m−1. The red dashed lines correspond to a fully ionized plasma (χ = 0), the
blue crosses to a partially ionized case (χ = 4), and the black diamonds to a weakly ionized
case (χ = 100). The solid lines represent the solutions given by the analytical approximation
in Equation (6.52). The shaded zone denotes the region of flow velocity values that have been
frequently measured in solar prominences.

full numerical results. Thus, Equation (6.52) may be used to calculate estimates of growth
rates of KHI in a real prominence thread without the need of solving the much more complex
full dispersion relation.

Up to this point, the present analysis has demonstrated that KHI may be triggered in
quiescent prominences in the presence of sub-Alfvénic flows as a result of the effect of partial
ionization. However, it is not yet possible to state that this magnetohydrodynamic instability
may explain the observed turbulent flows. Before doing so, it is necessary to check whether
the growth rates given by the theory are consistent with an instability that can be actually
observed. Estimated lifetimes of prominence threads are about 20 minutes (Lin et al. [2005]).
The comparison between the theory and the observations is best performed by using as reference
the growth times of the instability, defined as τI ≡ 1/ωI , instead of the growth rates. Table
6.1 shows the growth times that correspond to the solutions presented in Figure 6.8 for shear
flow velocities of 30 km s−1 (which is the highest value obtained from the already mentioned
observations).

Table 6.1: KHI growth times (τI) in a prominence thread

λ = 100 km λ = 1000 km
χ = 4 1000 s 105 s (∼ 28 h)

χ = 100 100 s 104 s (∼ 2.8 h)

The growth times obtained for a perturbation with a wavelength λ = 1000 km are longer
than the typical lifetime of a thread. Therefore, an instability originated by that perturbation
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cannot be the cause of the observed turbulent flows. Conversely, the growth times for the
shortest wavelength are of the same order of magnitude or lower than the detected lifetimes.
This means that during the life of a prominence thread there is enough time for the development
of a KHI caused by a perturbations with that wavelength.

As the last item of this investigation, it is interesting to show that the analytical approx-
imation given by Equation (6.52) may be a useful tool in the field of prominence seismology
(Ballester [2014]). Introducing a new parameter ν̄, called mean collision frequency of the
plasma, which is defined through the following relation

1

ν̄
=

2ρn,0ρn,ex

(ρn,0 + ρn,ex) (ρn,0νni,0 + ρn,exνni,ex)
, (6.55)

the imaginary part of Equation (6.52) can be now written as
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. (6.56)

Values of the three parameters that appear in the right-hand side of the previous equation,
namely the flow velocity, the perturbation wavelength, and the KHI growth rate, can be esti-
mated from observations. Consequently, through this formula, it may be possible to estimate
the coupling degree between the two components of the plasma.

6.4 Discussion

This final chapter has been devoted to the study of how the presence of neutral species in a
plasma affects the propagation of waves and the possible occurrence of KHI in a cylindrical
magnetic flux tube. The multi-fluid model detailed in Chapter 2 has been applied here to two-
fluid plasmas in which all the ionized species and electrons are treated as a single component
while there is an additional component that corresponds to the neutral species. A dispersion
relation for small-amplitude incompressible waves has been derived, which is given by Equation
6.49, and the dependence of its solutions on several physical parameters, namely the shear flow
velocity, the neutral-ion collision frequency, and the longitudinal and azimuthal wavenumbers,
has been studied.

It has been found that perturbations at an interface separating two partially ionized plasmas
are unstable for any velocity shear, contrary to what occurs in fully ionized plasmas, in which
the effect of the magnetic field only allows the onset of the KHI for super-Alfvénic shear flows.
It has been shown that the collisional coupling that exists between the two species of the
partially ionized plasma reduces the growth rates of the instability associated to the neutral
component, although it is not able to avoid its onset. These results are consistent with previous
works like the ones developed in simpler configurations by Watson et al. [2004] and Soler et al.
[2012b], for example. The dispersion relation derived here reduces to Equation (37) of Soler
et al. [2012b] or Equation (26) of Watson et al. [2004] in the TT limit. Moreover, in the absence
of an equilibrium flow and when the densities of neutrals go to zero, it is possible to recover
from Equation (6.49) the incompressible limit of Equation (8a) of Edwin and Roberts [1983],
which describes the properties of waves in a fully ionized cylindrical flux tube.
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The study of the dependence of the normal modes on the azimuthal wavenumber has shown
that the modes with a higher m are more unstable and have lower oscillation frequencies.
However, this variation is only appreciable beyond the TT limit and has a small significance.

Then, the application of the two-fluid theory to threads of quiescent prominences has shown
that, for a certain combination of parameters, the turbulent flows detected in those structures
may be interpreted as consequences of KHI in partially ionized plasmas. For instance, the KHI
growth times corresponding to a perturbation with λ = 100 km applied to a magnetic flux tube
with densities and magnetic fields akin to those of a prominence thread are of the order of or
lower than the typical lifetimes of those coronal features, which means that it is possible for
this instability to develop before the thread disappears.

Furthermore, an analytical approximation of the KHI growth rates for slow shear flows and
strong ion-neutral collisional coupling has been derived. This formula, given by Equation (6.52),
is easier to handle than the full dispersion relation and thus easier to interpret: growth rates
of the KHI have a quadratic dependence on the longitudinal wavenumber and the shear flow
velocity, and are inversely proportional to the neutral-ion collision frequency. This analytical
approximation may be useful in the field of prominence seismology: from this formula, it is
possible to define a mean collision frequency ν̄, given by Equation (6.55), that may be computed
from observational data to obtain an estimation of the coupling degree of ions and neutrals in
solar prominences.
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Concluding remarks and future work

In this Thesis, a multi-fluid model has been used to investigate how elastic collisions between
the different components of a plasma affect the properties of low- and high-frequency waves and
the development of the Kelvin-Helmholtz instability in fully and partially ionized environments.
The model has been presented in such a general way that allows its application to a huge variety
of astrophysical and laboratory plasmas. Nevertheless, this work has been dedicated to the
research of plasmas of the solar atmosphere, with a focus on the chromospheric region and on
prominences, although environments like the solar corona and the solar wind have also been
studied.

It has been shown that the multi-fluid approach accounts for some effects and phenomena
that cannot be addressed by single-fluid descriptions like ideal MHD. For instance, according
to the results explained in Chapter 3 for fully ionized plasmas, the multi-fluid theory pre-
dicts the existence of more oscillatory modes than ideal MHD when the plasma is subject to
low-wavenumber impulsive perturbations. Such additional modes are associated with the ion
cyclotron frequencies. Moreover, when the effect of Coulomb collisions between ions is consid-
ered, those waves are highly damped in comparison with Alfvén waves. Actually, for Alfvén
waves in the solar atmosphere, the damping times due to Coulomb collisions are so large that
the effect of such interaction can be neglected. On the other hand, when the wavenumber
of the impulsive driver is increased, the Alfvénic branch splits in two different modes: the
high-frequency ion cyclotron and whistler modes, which are left-hand and right-hand circularly
polarized waves, respectively. Those high-frequency modes are greatly affected by the friction
between the different ionized species. In the solar atmosphere, they are much more short-lived
than Alfvén waves, specially the ion-cyclotron waves. Furthermore, when a periodic driver is
considered to act on a collisionless fluid, the L-modes have cut-off regions, in which the waves
become evanescent, and resonances, where the phase speed is equal to zero and the perturba-
tion does not propagate. Such cut-offs and resonances are removed when collisions are taken
into account. Due to the diffusive effect of collisions, the perturbations can propagate at those
regions and singular frequencies, although they are still strongly damped in space.

In Chapter 4, the effects of partial ionization and resistivity have been analyzed for plas-
mas with conditions akin to those at several heights of the chromosphere and of a quiescent
prominence. The damping of the low-frequency waves has been found to be dominated by
elastic collisions between ions and neutrals, while the damping of high-frequency oscillations is
primarily due to Coulomb collisions between ions and to resistivity, with the R modes being
the most affected by the latter mechanism. This behavior is explained by the fact that the
damping is more efficient when the collisional frequencies are closer to the oscillation frequency,
as proven by Leake et al. [2005], Zaqarashvili et al. [2011a] or Soler et al. [2013b], and that
the interactions with neutrals have typically lower frequencies than the collisions with ions and
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electrons. In addition, it has been confirmed once more that, due to the presence of neutrals,
the oscillation frequency and the propagation speed of Alfvén waves is reduced. It has also been
demonstrated that Hall’s current plays a very important role in weakly ionized environments
like the lower chromosphere: in fully ionized plasmas, the divergence in the properties of the
L and R modes starts at frequencies of the order of the cyclotron frequencies, but in weakly
ionized plasmas such departure can occur at frequencies several orders of magnitude smaller.
Hall’s current also removes the cut-off region for Alvén waves in weakly ionized plasmas which
was predicted by some two-fluid theories that used a simpler version of the induction equation.
In addition, the performed numerical simulations have shown that the friction due to collisions
transforms a fraction of the energy of a given initial perturbation into internal energy of the
plasma, which implies an increment of its temperature. Hence, the plasma is heated by this
kind of collisions.

The conclusions commented above have been derived from the study of small-amplitude
perturbations. Nonetheless, in this Thesis, perturbations of large amplitude has also been ex-
amined. In Chapter 5, several second-order effects of non-linear waves have been analyzed.
In fully ionized plasmas, the ponderomotive force caused by standing non-linear Alfvén waves
produces an accumulation of matter at the nodes of the magnetic field wave. That accumula-
tion is limited by the effect of pressure: a saturation value of density is reached and then an
oscillatory motion appears. The results presented in Chapter 5 show that the effect of pressure
is enhanced by partial ionization. The dissipation of Alfvén waves due to collisions between ions
and neutrals generates a faster growth of the pressure, and as a consequence the matter tends
to be displaced from the nodes of the magnetic field instead of accumulating at those points. In
addition, the frequencies of the resulting oscillations in density and pressure are proportional to
the modified Alfvén speed, c̃A, and the weighted mean sound speed, c̃S. Another investigation
described in the same chapter has examined how a velocity perturbation of large amplitude, of
the order of 0.1cA, affects the energetics of a plasma with properties akin to those of a solar
prominence. The energy of the initial perturbation is transformed by means of collisions into
internal energy, which has two components: the first one is associated with the nonlinearly
generated second-order sound waves, while the other is related to the rise of the temperature
of the plasma. In the numerical simulations performed here, up to a 6% of the initial energy
has been deposited in the plasma after the propagation of the perturbation, which leads to an
increment in temperature.

Finally, in Chapter 6 the effect of ion-neutral collisions on the onset of the Kelvin-Helmholtz
instability in magnetic flux tubes has been analyzed. It has been shown that the neutral
component of the plasma is unstable for any value of the velocity shear. Collisions reduce the
growth rate of the instability, specially for sub-Alfvénic shear flows, but they cannot completely
avoid its onset. Hence, in the absence of other stabilizing effects like gravity or surface tension,
partially ionized plasmas are unstable for any value of the shear flow velocity. A cylindrical
two-fluid model has been applied to the investigation of KHI in prominence threads and it
has been found that, for certain wavelengths of the perturbations, the growth times of the
instability may be of the order or lower than the typical lifetimes of the threads.

The results briefly commented in the previous paragraphs have been obtained for plasmas
composed of up to three different ionized species but they can be easily generalized to plasmas
with a larger number of charged species. Other ways of improvement are the following. In
the first place, the majority of the research presented in this Thesis has focused on static
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homogeneous plasma. Hence, a reasonable improvement would be the consideration of non-
homogeneous plasma. For example, it would be of interest the application of the multi-fluid
model to the study of how the different kinds of waves propagate throughout the stratified solar
atmosphere. In such a case, phenomena like wave amplification, shock generation, refraction
and reflection of the waves or parametric decay may appear. It is also interesting to study the
effect of the ponderomotive force caused by non-linear Alfvén waves in coronal loops taking into
account their curved geometry. Another possible refinement is related to the equations that
describe the dynamics of each fluid: higher-order moment transport approximation can be used
to allow the examination of the influence of stress and heat flows. Moreover, even without the
mentioned modifications, there are several issues worth inspecting. For instance, the theoretical
model presented in this Thesis may be also applied to the investigation of magnetosonic waves
in multi-component plasmas or the non-linear phase of the Kelvin-Helmholtz instability.
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